

Collaborative Robotics with Lego Mindstorms

Master Thesis of Andreas Junghans
Department of Computer Science

Karlsruhe University of Applied Sciences, Germany

03/01/2001 to 07/31/2001

Supervisor: Prof. Dr. Peter A. Henning
Co-supervisor: Prof. Heinrich Herbstreith

Declaration

I have written this thesis independently, solely based on the literature and tools mentioned in
the chapters and the appendix. This document – in the present or a similar form – has not and
will not be submitted to any other institution apart from the Karlsruhe University of Applied
Sciences to receive an academical grade.

Karlsruhe, 10th of August, 2001

(Andreas Junghans)

http://ars.userfriendly.org/cartoons/?id=20010723&mode=classic

http://ars.userfriendly.org/cartoons/?id=20010723&mode=classic

Contents

1 Introduction 1
1.1 Document conventions. 1
1.2 Subject of this thesis. 2

2 About Lego Mindstorms 3
2.1 Hardware and firmware. 3

2.1.1 The Robotics Invention System 1.5. 3
2.1.1.1 The RCX and the Lego firmware. 3
2.1.1.2 Lego Technic parts and sensors. 8
2.1.1.3 The IR tower. 9

2.1.2 The Vision Command camera. 10
2.2 Software. .10

2.2.1 The Robotics Invention System programming environment. 10
2.2.1.1 User interface. 10
2.2.1.2 Generated programs. 11

2.2.2 RoboLab .12
2.2.3 LASM .12
2.2.4 The Spirit ActiveX control. 13
2.2.5 Lego Mindscript .13
2.2.6 NQC .13
2.2.7 The Vision Command programming environment. 15

2.2.7.1 Basics .15
2.2.7.2 RCX interface. 16

2.2.8 The Logitech QuickCam SDK. 17
2.3 Glossary. .17

3 The soccer project 19
3.1 Planning the environment. .19

3.1.1 Prerequisites. .19
3.1.2 The environment used in this thesis. 20
3.1.3 Possible alternatives. .21

3.2 Constructions. .22
3.2.1 The arena. .22
3.2.2 The robots .22
3.2.3 The overhead camera. .23

3.3 Software. .24
3.3.1 Where am I?. .24

i

Contents

3.3.1.1 Floor patterns. 24
3.3.1.2 Driving along a wall. 28
3.3.1.3 Aligning orthogonally to a wall. 32
3.3.1.4 The world model. 33
3.3.1.5 Robot characteristics. 35

3.3.2 Where is the ball?. .37
3.3.2.1 Using Vision Command as a smart sensor. 37
3.3.2.2 Excursion: USB cameras and WDM streaming drivers. . . 38
3.3.2.3 Writing a filter driver . 41
3.3.2.4 Finding and amplifying the ball. 44
3.3.2.5 Broadcasting to several robots. 47

3.3.3 The main program. .49
3.3.3.1 Strategy .49
3.3.3.2 Utilities and gimmicks. 50

3.4 Put to the test. .51

4 Conclusions 55
4.1 Useful results. .55
4.2 Possible improvements. .56

A NQC code for the soccer robots (excerpt) 57

B Bibliography 63

ii

List of Figures

2.1 The RCX . 4
2.2 The display and buttons of the RCX. 7
2.3 Special Mindstorms parts. 9
2.4 Mindstorms IR tower. 9
2.5 Vision Command camera. .10
2.6 The Robotics Invention System programming environment. 11
2.7 Screenshot from RoboLab. .12
2.8 The Vision Command programming environment. 15

3.1 RoboCup Junior setup. .19
3.2 Ball recognition information flow. 20
3.3 Ball recognition region scheme. 20
3.4 The soccer arena. .22
3.5 Bumper of the soccer robot. .23
3.6 The soccer robot .23
3.7 The overhead camera. .24
3.8 Floor pattern (first try) .25
3.9 Floor pattern (second try). .25
3.10 Floor pattern (third try). .25
3.11 Floor pattern (final version). .25
3.12 Adaptive detection of shades. .27
3.13 Wall following algorithm .29
3.14 Robot in a corner. .31
3.15 Robot at a wall .31
3.16 Unwanted ”polishing” .32
3.17 Orthogonal alignment algorithm. 33
3.18 World model coordinate system (first try). 34
3.19 World model coordinate system (final version). 35
3.20 WDM streaming driver layers. 39
3.21 Device Object stack. .42
3.22 Example for using ”weights” to find the ball. 45
3.23 The cam filter at work. .47
3.24 Vision Command RCX communication. 48
3.25 Playing strategy. .49
3.26 Master climbers. .53
3.27 Go go go54

iii

List of Tables

3.1 Static robot characteristics. .36
3.2 Dynamic robot characteristics. 36

iv

1 Introduction

1.1 Document conventions

Throughout this thesis the following conventions are used:

• Important terms areitalicizedwhen first used.

• Within a glossary entry,italicized terms indicate that these terms have an entry of their
own.

• All code fragments are formatted intypewriter style .

• Names of functions are marked with trailing parentheses. Example:turnRight() .

• References are made by sections numbers rather than names.
Example: see section1.1.

• Figures and tables are numbered on a per chapter basis.

• References to figures and tables are made without page numbers, except the figure or
table in question is more than 3 pages away from the reference.

This document has been typeset using LATEX2e in the MiKTEX 1.20e distribution.

1

Chapter 1. Introduction 1.2 Subject of this thesis

1.2 Subject of this thesis

The intention of this thesis was to show different possibilities how two or more autonomous
robots can work together to solve a problem – e. g. climbing stairs or finding their way
through a labyrinth. However, the core of my studies was making the robots play soccer -
and this took much longer than planned ...

There is already one very successful Mindstroms soccer project described in [LP00] by Hen-
rik Hautop Lund and Luigi Pagliarini which is used for the Junior league of the annual
RoboCup event [Rob]. This is a great piece of work and far more advanced than I got in
this thesis! However, there are two main caveats:

• Lund and Pagliarini have used special balls, emitting infrared light of the frequency
used by the Lego light sensor. This way, most of the ball finding problems have been
solved – but without this specialty, the robots cannot play at all!

• The robots have been equipped with three light sensors and other parts not contained
in a standard Robotics Invention Set (see section2.1.1.2).

Both make it difficult to copy the setup for own experiments. In contrast, I wanted to de-
velop an environment that works with just a few standard components - more precisely one
Robotics Invention Set per robot and an additional Vision Command overhead camera. I also
used a few wooden bars for the arena, but that doesn’t count ...

Now, after 5 month, I have robots that can play fairly well (especiallywithout an opponent),
and that are great fun to watch (especiallywith an opponent). Due to the numerous problems
I had to solve (which you can read about in the following chapters) there was not enough
time for the other projects I had intended. Nevertheless, I hope that I can offer some useful
tools to the Lego Mindstorms community as a result of this work. All software developed for
this thesis is available at [Juna].

Have fun with it!

2

2 About Lego Mindstorms

2.1 Hardware and firmware

2.1.1 The Robotics Invention System 1.5

The core product of the Lego Mindstorms series is theRobotics Invention System (RIS). It
is intended to teach children and adults the basics of robotics using familiar Lego bricks.
With the RIS you can build robots that move and react to inputs from their environment,
e. g. touch and light. The robots’ programs are written on a host computer (see section2.2),
downloaded to the robot via an infrared connection, and then executed autonomously. The
latter is probably the most fascinating about Mindstorms – no cables or any other connection
to a stationary computer is required for the robots to move around.

The current version of the RIS is 1.5 which includes an additional manual and online videos
for novice users that were not present in 1.0.

2.1.1.1 The RCX and the Lego firmware

The most important part of the Robotics Invention System is the RCX. This is a special
Lego brick with an integrated Hitachi H8/3292 microcontroller (running at 16 Mhz), three
sensor inputs, three motor outputs, an IR transceiver, an LCD, and four control buttons. A
simple speaker for sound output is also integrated. The RCX requires six batteries of type
AA (Mignon) to run. If you have seen how powerful the motors are, you understand why ...

Besides low-level hardware access routines, the 16 KB on-chip ROM of the RCX only pro-
vides basic communication logic to download afirmwarethat serves as the execution envi-
ronment for any user-written programs. However, there are also tools to program the RCX
directly (see [Cap00]). Additionally, the RCX contains 32 KB of RAM that is shared by the
firmware and the actual programs.

The following pages describe the features of the RCX in the context of the current Lego
firmware (Version 2.0). This version does not come with the RIS 1.5 but is available as part
of the RCX 2.0 Beta SDK [LEG00] and also included with the Vision Command camera
(see section2.1.2). Most of the features are available in other execution environments too,
but organized differently. The most interesting alternative to the Lego firmware is called
leJOS[Sol] and provides a Java runtime environment. More information (including source

3

Chapter 2. About Lego Mindstorms 2.1 Hardware and firmware

Figure 2.1: The RCX
(Source:http://mindstorms.lego.com)

4

http://mindstorms.lego.com

Chapter 2. About Lego Mindstorms 2.1 Hardware and firmware

code) can be found athttp://lejos.sourceforge.net/ . It should be noted that leJOS
requires only 17 KB of memory while the Lego firmware consumes about 24 KB, leaving
not much space for user programs.

Besides the RCX, Lego offers two other programmable bricks (shortP-bricks) calledCyber-
MasterandScout. The latter is included in theRobotics Discovery Set. Of all P-bricks, the
RCX is the most advanced.

Commands and programs The Lego firmware is basically a bytecode interpreter. A
user program must be downloaded into one of fiveslots (using the IR interface) before it
can be executed by the firmware. All bytecodes are documented in the RCX 2.0 Beta SDK
[LEG00]. Besides downloading a complete program, individual commands can also be exe-
cuted directly via the IR link.

All commands consist of an opcode (1 byte) and, if required, parameters (up to 5 bytes).
The RCX secures every command transmission by performing a logical not operation on the
command byte and sending back the result (except for bit 4 which has a special meaning).
Downloads of firmware and programs are secured by simply adding up the bytes and per-
forming a modulo operation on the result (mod 256 for programs, mod 65536 for firmware).

Tasks, resources, and events One of the outstanding features of the RCX (or rather
the Lego firmware) is built-in multitasking. Up to 10 concurrent tasks per slot are possible.
The priority of each task can be adjusted between 0 (highest) and 255 (lowest).

Since multitasking can lead to conflicts – e. g. when two tasks want to play sound at the
same time –, the Lego firmware manages four resources: the three motors outputs and sound
output. Each task can request access to these resources. Access is granted if no task of higher
priority owns the resources in question. Access is denied (or taken away if granted before) as
soon as a task with equal or higher priority requests the same resources. A task can specify
a handler routine that is executed when it loses any of its acquired resources, so it can act
appropriately. It should be noted that access control is not mandatory. If a low priority task
uses motor commands without applying for access first, these commands are executed even
if another task currently ”owns” the motors.

A task can also monitor up to 16 different events. These events are freely configurable, i. e.
you can specify which event source to monitor and what type of event you want to receive.
The possible event sources are:

• A physical sensor (touch, light, rotation, temperature, or self-made).

• A timer.

• A counter.

• An incoming IR message.

5

http://lejos.sourceforge.net/

Chapter 2. About Lego Mindstorms 2.1 Hardware and firmware

In addition to the event source, you must specify what type of change should trigger the
event. For example, if you specify EVENT_TYPE_LOW, the event is triggered when a (con-
figurable) lower limit is reached. The firmware supports 11 different event types, including
clicks (a value goes from low to high and back to low), rapid changes, and incoming IR mes-
sages. To receive events, a task specifies an event handler that interrupts normal execution as
soon as an event is triggered.

Sensor inputs As already mentioned, the RCX has three sensor inputs. You can connect
one or more sensors to each input. If more then one is connected, you may or may not be
able to differentiate between them (see [Ove99]), so the usual case is having one sensor on
one input. Sensors are connected to the RCX with special cables that have small lego bricks
with metal contacts at both ends. Some sensors (e. g. the light sensor) have cables where one
end is hardwired to the sensor.

There are five types of sensors that can be used with the RCX (this number may grow with
future firmware versions): touch, light, temperature, rotation, and generic. Generic means
that, unlike the other types, the sensor signal is not preprocessed in any way. This is useful
for self-made sensors. Sensor values can be used as event sources or queried directly.

Timers and counters The RCX has four timers with 10 ms resolution. Timers can be
cleared (i. e. set to 0), set to a specific value, queried directly, and used as event sources.

Counters are similar to variables (see below). However, counters can only be incremented or
decremented by one. What makes them interesting is that they can be used as event sources.

Variables, sub routines, and program flow control All variables provided by the
Lego firmware are 16 bit integers. There are 32 global and persistent variables, i. e. they
can be accessed from every task and sub routine and keep their values even if the RCX is
turned off. Another 16 variables are local per task and can be used for temporary variables or
parameter passing. It should be noted that the term variable is a bit misleading. The way they
are organized and accessed makes them more similar to registers really. Variables can be
manipulated using arithmetic operations (+, -, *, /), logical operators (and , or), and special
commands for calculation of the sign and the absolute value.

For repeatedly needed parts of a program, the firmware provides up to 8 sub routines per
task. Unfortunately, a sub routine is not allowed to call another sub routine.

The firmware facilitates flow control by conditional and unconditional jumps.

Motor outputs The RCX can drive motors through its three 9V outputs. Only one mo-
tor can be connected per output. The behaviour of the motors is determined by the mode,
direction, and power attributes. Mode can be one ofon, off, or float. On means the motor is
turning with the current power setting, off means the motor actually breaks, and float lets it

6

Chapter 2. About Lego Mindstorms 2.1 Hardware and firmware

Figure 2.2: The display and buttons of the RCX

move freely, but without turning on its own. The motor direction can beforward or reverse.
The power of a motor is a constant between 0 (low) and 7 (high).

The RCX’s three outputs are independent, so the attributes just described can be specified
per motor. For example, a robot with one motor on each side can turn around by setting one
to forward and one toreversedirection.

Motors can also be globally disabled, set to a specific direction, and limited regarding their
maximum power. If a motor is diabled, none of the regular motor commands has an effect. If
a motors is globally set to reverse direction, all direction commands are interpreted inversely,
i. e. forward as reverse and reverse as forward.

Besides motors, other actuators can be connected to the outputs as well. For example, Lego
offers a small ”lamp” the brightness of which can be regulated through the output power.
Naturally, directional settings don’t make sense in this case.

Display and buttons The RCX contains an LCD with a programmable 4-digit section.
It can be set to monitor a value (e. g. a timer) continously with only a single command. The
display also shows the current execution state (program running/not running), the fill state of
the datalog (see below), the number of the currently selected program slot, the state of the
motors, and the state of connected touch sensors (small triangles that show up when a sensor
is pressed).

The four buttons on the RCX are titledOn/off, Run, Select Pgm, andView. The On/off
button should be self-explanatory ... The Select Pgm button allows to cycle through the five
program slots. The program in the currently selected slot (if present) can be started using the
Run button. Finally, the View button allows to display the values of connected sensors in the
4-digit section mentioned above.

The IR transceiver Communication from the RCX to a host computer or another RCX is
realized through the integrated IR transceiver. The supported baud rates are 2400 and 4800.
Other settings that can be specified programmatically include sending power (long vs. short
range), carrier frequency, and packet format. Details about the IR protocol can be found in
[Pro99].

Besides uploads and downloads from and to the host, the firmware supports the exchange
of simple messages between RCX bricks where each message consists of a single byte. Re-

7

Chapter 2. About Lego Mindstorms 2.1 Hardware and firmware

ceived messages are stored in a 1-entry buffer from where the currently running program can
read them. Another message can only be received when the program has cleared the buffer.

In [Ove99], Mark Overmars also shows a way to combine the IR transceiver and a light
sensor to get a rough proximity sensor. Unfortunately, there is no other way of measuring
distances, except with self-made sensors.

Miscellaneous In addition to the features already mentioned, the RCX supports sound
generation. First, there are some built-in system sounds (like frequency sweeps up and
down). The second way of producing sound is by specifying a frequency/duration pair.

A very useful feature for program debugging is thedatalog. This is a memory area in which
16 bit integer values can be stored during program execution. Before the log can be used, it
must be initialized by specifying the desired number of integers to store. After it is filled up
(which is shown on the LCD), the log can be uploaded to the PC for examination. This way,
you can, for example, look at the values a light sensor collected while the robot was moving
around.

Finally, there is an integrated watch in 24 hour format. Probably its only useful purpose is
being displayed on the LCD.

The software developer’s view The RCX and the Lego firmware offer a mixture of
high and low level commands that can be slightly confusing. On the one hand, there are
features like tasks and event monitoring which allow for a high level of abstraction. On the
other hand, variables and sub routines are very limited and make it difficult to structure a
program. This continues right up to the development tools presented in section2.2 which
share both the benefits and constraints with the firmware.

What is really annoying about the current firmware version is its enormous size. If you
subtract the 24 KB of the firmware from the available 32 KB, only 8 KB are left for own
programs and the datalog. Also, performance can be an issue at times since all commands
are interpreted.

2.1.1.2 Lego Technic parts and sensors

Most of the RIS consists of standard Lego Technic parts. Only the two included motors seem
slightly different, and there are a few special parts some of which are shown in figure2.3.
Additionally, the RIS contains two touch sensors and one light sensor that can be connected
to the RCX.

With more than 700 pieces, one RIS set already allows for rather complex robot construc-
tions. If that isn’t enough, one can always purchase additional Lego Technic sets or one of the
Mindstorms Expansion sets (see the Lego Mindstorms Homepage [LEGa]). More and dif-
ferent sensors can also be purchased individually, most notably a rotation and a temperature
sensor.

8

Chapter 2. About Lego Mindstorms 2.1 Hardware and firmware

Figure 2.3: Special Mindstorms parts

Figure 2.4: Mindstorms IR tower

2.1.1.3 The IR tower

An important part of the RIS is the so-calledIR tower which serves as a communication
facility between a PC1 and the RCX. It needs a 9V block battery to run and is connected to a
serial port with a 9-pin cable.

Like the RCX transceiver, the tower has two range settings (near and far). With both the
tower and the RCX set to far, I have been able to cover a distance of 1.6 meters! However,
the tower quickly empties the battery with this setting.

In the 2.0 version of the RIS, at the time of writing only available in Japan, the serial port
connection is replaced by the Universal Serial Bus (USB). The great advantage is that the
USB provides enough power to run the tower without a battery.

1You can also connect it to other computers like the Apple Macintosh (see [Baub]), but all the original Lego
software only runs under MS Windows.

9

Chapter 2. About Lego Mindstorms 2.2 Software

Figure 2.5: Vision Command camera

2.1.2 The Vision Command camera

Lego offers a CCD camera connected to the USB port of a PC that can be used for light,
color, and movement recognition. The camera can be connected to standard Lego technic
parts and thus be mounted on a Mindstorms robot. However, the USB cable keeps the robot
tied to the host computer. Although 5 meters long, this is not an option for wildly moving
soccer robots since they would sooner or later get entangled.

The camera delivers still pictures and streaming video at a maximum resolution of 352x288
(Y channel) and 176x144 (U and V channels) respectively. The image quality matches that
of average web cams. A small microphone is also built-in. There are only two controls: a
focus ring and a button for taking still pictures.

The Vision Command set additionally includes 145 Lego Technic parts for different camera
stands and attachments.

2.2 Software

2.2.1 The Robotics Invention System programming environment

The following sections are based on Version 1.5 of the RIS. At the time of writing, Version
2.0 is only available in Japan, but part of its functionality is available through the RCX 2.0
Beta SDK [LEG00].

2.2.1.1 User interface

The software that comes with the RIS provides a complete environment for programming
Mindstorms robots. The core of the RIS software is an interactive visual flow charter shown
in figure 2.6. Lego bricks represent actions (e. g. turning on a motor), sensors, and flow
control (like conditional processing or loops). The whole user interface is designed for ease
of use, including step by step tutorials with videos accompanying each step.

10

Chapter 2. About Lego Mindstorms 2.2 Software

Figure 2.6: The Robotics Invention System programming environment

Sensor inputs can be processed with so calledsensor watchers. Each type of watcher is
responsible for one of the possible event sources listed in section2.1.1.1and has one or
more connections points. The light sensor watcher, for example, has two connection points
– one for dark and one for bright values. The commands under the dark connection point
are executed whenever the sensor value enters a configurable ”dark” range. The commands
under the light connection point are executed whenever the sensor value enters a configurable
”light” range.

The RIS software only provides a single counter that can just be incremented and reset to 0
again. The only way to react to the counter’s value is a sensor watcher with a configurable
range of values and a single connection point. Whenever the counter enters the specified
range, the commands under the connection point are executed. The RIS software has no
support for variables.

Only one of the RCX’s timers is available in the RIS environment, and only with 100 ms
resolution. All you can do with the timer is reset it and use it as an event source (represented
by the timer watcher).

Commands that should be executed directly after pressing the Run button on the RCX –
rather than waiting for an event – must be placed under the ”program” brick.

2.2.1.2 Generated programs

The programs generated from the flow chart consist of three kinds of tasks:

• The main task initializes timer and counter, the sensor inputs, and the motor outputs.
Afterwards, it continuously monitors the events.

• The program task executes the commands placed under the ”program” brick. It is
started by the main task after initialization is complete.

11

Chapter 2. About Lego Mindstorms 2.2 Software

• One task per sensor watcher connection point. As soon as the corresponding event
is triggered, the task is started. If it is still running when the next event arrives, it is
restarted abruptly.

2.2.2 RoboLab

Like the software that comes with the RIS,RoboLab[LEGb] is a visual tool for creating
programs in the form of flow diagrams. It is based on LabVIEW by National Instruments
and available from Lego Dacta, the educational branch of Lego. RoboLab is much more
powerful than the RIS software while still easy to use. Nevertheless, it still doesn’t offer as
much freedom and flexibility as the text based languages presented in the following sections.

Figure 2.7: Screenshot from RoboLab
(Source:http://www.ceeo.tufts.edu/graphics/robolab.html)

2.2.3 LASM

The RCX 2.0 Beta SDK [LEG00] allows to program the RCX on an assembly language level.
Each mnemonic directly corresponds to a firmware command. The suitability of LASM for
writing programs is questionable. If you need to go to such a low level to achieve what you
want, you should consider switching to a replacement firmware that works on another basis
(see sections2.1.1.1and4.2). LASM is, however, very useful for sending immediately exe-
cuted low-level commands to the RCX without looking up the right bytecode and parameter
format all the time. This can, for example, be used to quick-check the battery loading status
or to read the global motor settings.

All necessary documentation can be found in the RCX 2.0 Beta SDK [LEG00].

12

http://www.ceeo.tufts.edu/graphics/robolab.html

Chapter 2. About Lego Mindstorms 2.2 Software

2.2.4 The Spirit ActiveX control

The RIS 1.5 comes with an ActiveX control for programming the RCX from high level
languages like C++. However, the necessary documentation [LEG99] must me downloaded
seperately. Basically, the Spirit control wraps the firmware commands with methods. Each
time you call such a method, the corresponding command is sent to the RCX. In addition to
this ”direct mode”, the control also provides a ”download mode” in which several method
calls are accumulated and then sent to the RCX as tasks and sub routines respectively.

With the Spirit control, you can create a complete programming environment for the RCX
on your own, but I don’t recommend it for simply writing programs – since it’s just a wrap-
per, you basically use the LASM assembly language with its mixture of low and high level
commands imposed by the firmware (see section2.1.1.1). However, the control is useful for
quickly building a ”control center” that displays status information, allows for downloading
programs, etc. In fact, the RIS programming environment uses the Spirit control for commu-
nication with the RCX.

2.2.5 Lego Mindscript

The RIS 2.0 and parts of the Vision Command software (see section2.2.7) use a script lan-
guage calledMindscript for RCX programs. The most important features which make it
preferable over LASM are expressions (e. g.3*4/someVariable) and macros. Macros are
like functions in other programming languages and can have parameters (but no return value).
They are either downloaded to the RCX as sub routines or expanded inline, whichever makes
more sense (decided by the Mindscript compiler). Besides these advantages, Mindscript is
also much more readable than LASM, although it’s not easy to get used to its syntax. In
General, NQC (see next section) is the better alternative.

The RCX 2.0 Beta SDK [LEG00] contains a small application that allows writing and com-
piling own Mindscript programs. It also contains the Mindscript documentation as PDF and
a Windows Help file describing the most important issues.

2.2.6 NQC

NQC stands forNot Quite Cand is a programming environment developed by Dave Baum
[Baua]. It supports a number of Lego programmable bricks, including the RCX with RIS 1.5
and 2.0 firmware.

NQC comes as a command line tool for compiling C like programs – hence the name – and
downloading them to the RCX. It is also capable of reading the datalog (see section2.1.1.1),
downloading firmware, directly executing commands, and changing RCX settings like the
range of the IR transceiver. Therefore, it can completely replace the RIS programming en-
vironment. NQC relies on the capabilities of the Lego firmware, so it cannot be used with
firmware replacements. Currently, there is also no support for the USB tower of the RIS 2.0.

13

Chapter 2. About Lego Mindstorms 2.2 Software

The language is easy to learn for anyone with a little C experience. The most important
differences from regular C are:

Support for multitasking A task looks like a function without parameters and return value
and can be started and stopped with the built-instart andstop commands.

Datatypes The only datatype isint with a width of 16 bits.

Functions Funtions look like C functions, except the return type must bevoid and param-
eters can be passed by reference using the C++ syntax; example:void func(int&

i) . Functions are always inlined, so you should use them carefully.

Sub routines These are declared like a function, but usingsub instead ofvoid . The differ-
ence is that they are not inlined but only stored once in the RCX. Due to limitations of
the Lego firmware, there can only be 8 sub routines in a program. Also, a sub routine
cannot call another sub routine since only a single memory location is used to hold the
return address. Unlike Mindscript, NQC doesn’t support parameters for sub routines,
so you have to use global variables as a workaround.2

Variables Due to limitations of the Lego firmware, NQC only supports 32 global and 16
local variables. However, the programmer does not have to think about this but can
simply follow the scope rules of C. NQC automatically assigns global or local storage
locations as needed - until it runs out of them of course.

Arrays Support for Arrays is very simplistic. For example, they cannot be initialized nor
can they be arguments to functions. There are also limits regarding the use of operators
on array elements.

Operators Besides the regular C operators, NQC supports||= to set a variable to the abso-
lute value of an expression and+-= to set a variable to the sign of an expression (+1,
0, -1).

Resources and eventsThe resource control described in section2.1.1.1is implemented by
theacquire statement, while events can be monitored with themonitor statement.
Both of them usecatch clauses to execute code when ownership of a resource is lost
or when an event is triggered respectively.

Preprocessor The NQC preprocessor is verly similar to its C counterpart. It supports the
#include directive as well as conditional compilation. There are a few special#pragma s,
e. g. for reserving certain storage locations so NQC will not use them for variables.

API NQC comes with a set of API functions for accessing sensors, motors, etc. Everything
offered by the current firmware can be achieved through this API. For special purposes
or future firmware releases, theasm statement allows direct specification of bytecodes
(hex notation, not LASM).

2This is the only real disadvantage of NQC. In all other aspects, it is much more powerful than LASM or
Mindscript.

14

Chapter 2. About Lego Mindstorms 2.2 Software

Figure 2.8: The Vision Command programming environment

2.2.7 The Vision Command programming environment

2.2.7.1 Basics

The Vision Command (VC) software combines image recognition capabilities with an in-
terface for building programs based on what is recognized in the image. Like in the RIS
environment, the programs are represented by Lego bricks. There are bricks for sound and
music generation, camera bricks for capturing still pictures or video sequences, flow control
bricks like loops, and special bricks for interfacing with an RCX (see next section). However,
you don’t need an RCX to work with Vision Command.

The software is able to recognize three different image attributes:

Light Reacts to light of a configurable brightness.

Motion Reacts to motion of a configurable speed.

Color Reacts to a configurable color.

For more flexibility, these attributes can be detected and treated seperately in different regions
of the camera image. These regions do not have to be rectangular, not even coherent! Up to
9 regions are combined into a so-calledpattern. For example, figure2.8shows a pattern with
4 regions. Only one pattern can be active at a time.

Every region has its own stack of bricks that is executed whenever light, motion, or color is
detected (configurable per region). What is not possible is to have a region react to more than
one attribute, e. g. motion and color. It should be noted that the stacks are associated with
region numbers, not with the actual regions. This means that if you change the pattern in a
program, the stacks still remain the same, even if they don’t make sense in the new context
or the respective region doesn’t exist anymore.

15

Chapter 2. About Lego Mindstorms 2.2 Software

Vision Command comes with 20 predefined patterns. This set can easily be extended by own
patterns as described on Michael Gasperi’s web site about VC [Gas]. You can also find a
special pattern there that allows detection of different colors in the same area of the camera
image, which is impossible if you only use the standard VC patterns.

Besides command stacks for different regions, every VC program has a main stack that is
continuously executed. By default, it only consists of an infinite loop with a single ”wait and
watch” command. This command just waits for some time and meanwhile checks if one of
the regions is active (i. e. if motion or light is detected or the specified color is sensed). If so,
the command stack for this region is executed. After the waiting period has expired, control
is transferred to the next command (which is, by default, the infinite loop containing the
”wait and watch” command itself). If you take away this brick from the main stack, image
recognition is effectively disabled. By adding your own commands to the stack, you can, for
example, let a melody play while waiting for something to happen.

2.2.7.2 RCX interface

Vision Command alone is quite flexible, but on its own it can just play sounds and capture
still images and video sequences. It gets much more interesting if you combine it with an
RCX and some motors. For this purpose, the VC software offers special bricks for controlling
the RCX, especially the motors. An example for using this is a tracking mechanism: Mount
the camera on a turntable and make it turn left if movement is detected on the left side of the
image, make it turn right if movement is detected on the right side. This way, the camera
automatically follows a moving object.

For communication with the RCX, VC uses the IR tower of the Robotics Invention Sys-
tem. On first look, you would expect VC to simply send directly executed commands to
the RCX when a region becomes active. However, the developers at Lego have chosen a
different approach: When a VC program is started, a small Mindscript program is compiled
and downloaded to slot 5 of the RCX. It contains all the relevant bricks – i. e. excluding
still image and video capture and other commands not intended for the RCX – as Mind-
script commands or calls to Mindscript macros shipped with the VC software. The ”wait
and watch” command mentioned in the previous section is implemented by waiting for the
specified period and meanwhile monitoring incoming IR messages. When a region becomes
active, VC sends a 1-byte message with the number of the region to the RCX which then
executes the corresponding stack of commands.

The main disadvantage of the VC/RCX communication architecture is that VC only provides
very few RCX commands – basically just motor control and sound. Most importantly, you
cannot query any sensors from a VC program. This is like giving the robot an eye but
taking away its ears and nose ... But as always, there are people who find ways around
such limitations. On his Vision Command web site [Gas], Michael Gasperi presents a way
of making the camera function as a smart sensor. By manipulating one of the Mindscript
macros used by VC, control is taken away from the VC program in slot 5 and transferred to
an arbitrary other slot. The program there can then evaluate incoming messages on its own
without being limited to the RCX bricks provided by Vision Command. Another advantage

16

Chapter 2. About Lego Mindstorms 2.3 Glossary

is that you are not restricted to the visual programming environment anymore but can also
use NQC.

2.2.8 The Logitech QuickCam SDK

The camera contained in the Vision Command set is a Logitech QuickCam model. Hence, the
QuickCam SDK [Log] can be used to access it without the Vision Command software. The
SDK comes with a COM object calledVideo Portalthat enables saving pictures and videos
to disk and gives easy access to the image data. This is great for implementing improved
recognition routines: You can simply write your own application using the Video Portal.
However, you then have to add RCX communication functionality on your own.

Besides the QuickCam SDK, every other software for accessing USB cameras works with
the Lego cam too, including popular video capture tools. What I haven’t tried is whether you
can use another camera with the Vision Command software, which could greatly improve
image quality.

2.3 Glossary

Datalog A series of integer values collected by anRCXprogram.
The datalog can be uploaded to a host computer for
evaluation, usually for debugging purposes.

Firmware The operating system of theRCX. The firmware resides
in the RCX’s RAM and uses low-level ROM routines
for interfacing the hardware.

IR tower An IR transceiver connected to a host computer. The
IR tower enables communication between the host and
aP-brick, e. g. for downloading programs to the brick.

LASM An assembly language for writingP-brick programs.

Mindscript A higher programming language for writingP-brickpro-
grams.

Not Quite C (NQC) A higher programming language for writingP-brickpro-
grams. NQC was not developed by Lego but by Dave
Baum [Baua].

P-brick Short for programmable brick. At the time of writing,
the available P-bricks are theRCX, CyberMaster, and
Scout bricks.

Pattern The combination of up to 9regionsin theVision Com-
mandsoftware.

17

Chapter 2. About Lego Mindstorms 2.3 Glossary

RCX A special lego brick with an integrated microcontroller.
The RCX and otherP-bricksare the heart of the Lego
Mindstorms product line.

Region A term used in theVision Commandsoftware. A region
is a part of the camera image in which light, motion, or
color is detected. Each region can have its own stack of
commands that are executed upon detection.

RoboLab A visual programming environment for RCX bricks based
on LabVIEW by National Instruments.

Robotics Invention System (RIS) A Lego set containing anRCXbrick, anIR tower, lots
of Lego Technic parts, and software for programming
autonomous robots.

Slot A storage location for anRCXprogram. The RCX pro-
vides 5 program slots.

Vision Command (VC) A camera set from Lego that includes image recogni-
tion software and can be combined with theRobotics
Invention System.

18

3 The soccer project

3.1 Planning the environment

3.1.1 Prerequisites

As mentioned in the introduction, my main goal was to make two or more robots play soccer.
This has been done with Lego Mindstorms before – most notably for the RoboCup Junior
league (see [LP00] and [Rob]). However, the RoboCop setup requires a special kind of
ball emitting infrared light and needs more parts per robot than contained in one RIS set.
In contrast, I wanted to create an environment using only standard parts from the RIS and
Vision Command sets. This way, the setup can easily be copied and used for own experiments
without the need for additional hardware. Also, the techniques used can be applied to other
problems too, while the RoboCup solution is fixed to soccer (which, of course, has its own
advantages).

Figure3.1 shows the RoboCup setup. You can see the gradient from black to white on the
floor (explained in the next section) as well as the smart ball.

Figure 3.1: RoboCup Junior setup
(Source:http://www.demo.cs.brandeis.edu/rcj2001/rcj2k.html)

19

http://www.demo.cs.brandeis.edu/rcj2001/rcj2k.html

Chapter 3. The soccer project 3.1 Planning the environment

3.1.2 The environment used in this thesis

The main question regarding robot soccer is always: How do the robots find the ball? Since
I didn’t want to use any non-Lego hardware, the only sensible option was employing image
recognition using the Vision Command camera. Since cable bound robots are not really a
good idea for playing soccer, the camera must be mounted above the playfield, and the IR
tower connected to the host computer must broadcast the current position of the ball to all
robots. The resulting information flow is depicted in figure3.2.

��� ��� ��� �
	
� ����

� ��� ���������
	
� ����

�����

�����
 ��

��� ��� !��
����"�!��
��� � !��

Figure 3.2: Ball recognition information flow

The playfield is devided into 8 quadratic regions, and the robots continuously receive mes-
sages with the number of the region currently containing the ball. Thus, they only roughly
know where the ball is and are forced to search around a little. In order not to make it too
difficult, the playfield is rather small with a length of 140 cm and a width of 70 cm. This
yields a length and width of 35 cm per region, which should not be too large to find the ball.

Figure 3.3: Ball recognition region scheme

Now that the robots know their destination, we’re facing the next problem: How do they
figure out where they are? In case of the RoboCup setup, a simple gradient from black to
white is placed on the playfield, and one light sensor of each robot is pointing to the ground.
This is enough for a player to decide whether it is moving towards the other team’s goal,
towards the own team’s goal, or none of these. Together with the IR ball shouting out ”here
I am” all over the playfield, it’s not too difficult to kick the ball into the right direction.

20

Chapter 3. The soccer project 3.1 Planning the environment

In my case, I needed a different approach. Since the robots only know the absolute coordi-
nates of the ball, they also need some information about their own position to successfully
kick it. While a gradient can quite reliably tell you where you’re moving to, it’s very hard
to determine your actual position based on this. Besides, the gradient only works in one
direction (up/down) and carries no information about the other (left/right). Nevertheless, I
decided to stay with the general idea of a floor pattern and a down-pointing light sensor, but
I looked for a different pattern. It also seemed a good idea to give the robots some abtract
world model rather than completely relying on the floor sensor.

As for the ball, there are a few restrictions regarding its color. It must not be the same as
the arena frame, and it should easily be distinguishable from the robots. Bright red is a
good choice, but I ended up with a not so bright pink – the color of the best ball I’ve found
regarding size (about the size of a tennis ball) and ”bouncing capabilities” ...

In summary, the setup I planned consisted of an arena with a size of 140x70 cm, a floor
pattern for orientation, an overhead camera, and four Mindstorms robots (two per team).
And, of course, a ball. Pictures of the individual components can be found in the following
sections. For programming the robots, I chose NQC (see also below).

3.1.3 Possible alternatives

What is most annoying about the environment described above is the need for an overhead
camera. It would be much more elegant if the robots could find the ball themselves while
still using a ”normal” ball. A possible approach would be to employ the proximity sensing
technique found in [Ove99], but there are two major difficulties: The technique only works
over short distances, and the robots must differentiate between the ball, other robots, and the
arena frame. There would be so many issues to solve that I don’t think this solution can really
be put into practice.

Another problem with the overhead camera is the inaccurate localization of the ball. Vision
Command only allows for a maximum of 9 regions of which I use only 8. In my case, this
yields a resolution of 35 cm for the ball’s position. To improve this, one could make the
playfield even smaller, but this is not really an option (see section3.4). The other alterna-
tive would be dropping the Vision Command software and replacing it by something more
specialized to the problem. This is further discussed in section4.2.

If we really need an overhead camera, the question arises if we could also use it to tell the
robots where they are? This would require markings on the robots and a special recognition
software, for example presented in [RAWG01]. All in all, it doesn’t seem to difficult. Again,
that is prevented by Vision Command’s limitation to 9 regions and color detection being
constrained to these regions. Besides, telling the robots where they are – or even where their
team mates and opponents are – would make them much less autonomous.

As for the robots’ programs, Mindscript would be an alternative to NQC. However, Mind-
script is not very readable, and NQC provides a lot more flexibility, e. g. regarding expres-
sions. LASM is not really a choice if the program should stay reasonably understandable. Of

21

Chapter 3. The soccer project 3.2 Constructions

course one could also work with a non-Lego firmware, providing the option to use ordinary
C or Java for programming. In order to keep the whole environment easy to copy and adept
by others, I turned down this option (see also section4.2).

3.2 Constructions

3.2.1 The arena

To prevent the ball and the robots from leaving the playfield, I built a simple wooden frame
shown in figure3.4. At first, I wanted to use Lego Duplo bricks to emphasize the ”Lego
feeling”, but the amount of bricks needed was far too expensive. The frame is painted dark
blue, so it cannot be mistaken for the ball. The space surrounded by it is almost exactly
140 cm long and 70 cm wide. A bigger arena would have been nice for more freedom of
movement, but finding the ball would have been more difficult then (see section3.1.2).

Figure 3.4: The soccer arena

3.2.2 The robots

First of all, I must admit that I’m not a gifted Lego builder. I find it fascinating to see
Mindstorms robots move around, but constructing them is quite hard for me. For this reason,
I simply started with the Roverbot described in the RIS contructopedia and equipped it with
a down-pointing light sensor. Since the original roverbot moves quite slowly, I also replaced
the motor and wheel gears in order to get a 1:1 gearing.

To detect touching the ball, the frame, or other robots, I added a 2-sensor bumper. Again, my
starting point was the version from Lego’s contructopedia. By using two touch sensors, the
robot can tell whether the left or right bumper arm was hit.

The main disadvantage of the standard bumper is its inflexibility. For example, a robot stand-
ing near the frame might not be able to turn around, just because a bumper arm slightly

22

Chapter 3. The soccer project 3.2 Constructions

touches the wall and blocks further movement. To solve this, I added some of the flexible
tubes from the RIS (see figure2.3on page9). The result is shown in figure3.5.

Figure 3.5: Bumper of the soccer robot

Figure 3.6 shows the complete soccer robot. As you can see, it takes up a lot of space,
especially considering the small playfield. However, the bumpers turned out to be crucial for
the robot’s ”sense of orientation”, so it’s difficult to make it considerably smaller.

Figure 3.6: The soccer robot

3.2.3 The overhead camera

The construction for the overhead camera is very simple. A Lego frame holds the camera
and is attached to a wooden bar. Additionally, the IR tower is mounted on one side of the
camera in order to broadcast the current position of the ball. This turned out to be very
convenient: New programs can be downloaded to the robots ”on site”, i. e. without lifting
them from the playfield, carrying them to the host computer, programming them, and putting
them back again. I think the idea of an overhead IR tower is also useful for other scenarios.
As mentioned before, I was able to cover 1.6 meters without problems. In fact, it’s not easy
to block IR traffic when both the tower and the RCX are set to long range. One day, I had
the tower on my desk and the robot under it, and I could still download programs (probably
because of light scattering).

23

Chapter 3. The soccer project 3.3 Software

Figure 3.7: The overhead camera

3.3 Software

3.3.1 Where am I?

3.3.1.1 Floor patterns

As described in section3.1.2, I planned to use a floor pattern for the robots’ orientation.
Unfortunately, this turned out to be quite a difficult task. My first approach was to simply
code the different regions with shades of gray (figure3.8). However, while allowing the
robot to instantly determine its rough position, it holds no information about its orientation
(i. e. where it’s facing), so my next try were gradients with different lightness (figure3.9).
With this pattern, the robot can determine its rough orientation by checking if it gets darker
or brighter. The region borders are a special case since they are marked by ”contrast jumps”
(at least in vertical1 direction). The intention was to find out the region by analysing the
magnitude of the jump. As you can see in figure3.9, the start color of each gradient is black
while the end is a shade of gray depending on the region. This makes the contrast jump
different for each vertical transition of a region border.

As you may have guessed by now, this didn’t work very well. I tried all other sorts of
gradients, checkered patterns, and ”bar codes” (figure3.10). The main reason why they all
failed was not that they were so bad (though most of them were probably nonsense) – the
light sensor just wasn’t accurate and fast enough.

First of all, the light sensor’s default way of operation is to produce values between 0 and
100. During my experiments, I seldom got values below 25 and above 55. If you want to
differentiate between 8 different shades, you get less than 4 values per shade! This wouldn’t

1To save space, the figure is turned by 90 degrees, so vertical is only referring to the common assignment of
x and y axis in this thesis. Regarding the figure, this should read ”horizontal”.

24

Chapter 3. The soccer project 3.3 Software

Figure 3.8: Floor pattern (first try)

Figure 3.9: Floor pattern (second try)

Figure 3.10: Floor pattern (third try)

Figure 3.11: Floor pattern (final version)

25

Chapter 3. The soccer project 3.3 Software

be a problem if the values were consistent. But instead, they change notably when overall
lighting gets slightly darker or brighter. Having discovered this, I made two decisions:

• Use the light sensor in raw mode which produces values in the range [0, 1000] in theory
and [600, 900] in practice.

• Concentrate on a few different shades and/or rapid changes, e. g. an abrupt transition
from black to white.

But still there was one serious problem: All my patterns were much too fine grained. With
a reasonably fast moving robot, I got about 10 samples per second or 1 sample per cm.
This includes processing, because seeing may be believing, but you also have to evaluate
the samples to determine the current position and orientation. However, even with simple
processing I couldn’t get much better. This was when I decided to rely much more on an
internal world modal than I had originally intended.

In the end, I chose the very simple pattern shown in figure3.11. Information about the
horizontal position is drawn completely from the world model (see section3.3.1.4). Verti-
cally, the robot can tell its orientation as soon as it drives over one of the bars. This is simply
achieved by looking whether a black/gray transition or a gray/black transition is encountered.
Information about the current position can be collected by counting the bars during vertical
movement. Anything else is left to the world model.

As you can see, the final pattern uses only 3 different shades. However, the robot is still
sensitive to lighting changes, which is why I developed the adaptive algorithm shown in
figure3.12. It starts with initial values it expects for the different shades (shades[0] through
shades[2]), but it also adapts these values with each sample it collects. For this purpose, a
simple floating average is employed:

newShade =
oldShade + newSample

2

In the beginning, I used a more complex formula, but multiplication and division are expen-
sive operations.2 Thus, in order to process as many samples per second as possible, I had
to keep these operations to a minimum. In the final soccer program, the adjustment is even
made conditional and only executed when there’s a relevant difference betweenoldShade
andnewSample.

If the current sample differs significantly from all three shades, if replaces one of them. This
is done in a ring buffer fashion, so the first timeshades[0] is replaced, the second time
shades[1] , etc. What is this good for? At first, replacing the nearest shade, i. e. the
one bearing the closest resemblance to the sample, seems to be the better choice. However,
imagine the following situation: All initial values are between 750 (shades[0]) and 850
(shades[2]). Due to changes in lighting, the actual values lie between 500 and 600. In
this case, the nearest shade is alwaysshades[0] , so the others would never be touched.

2The Lego virtual machine doesn’t provide bit shift functionality.

26

Chapter 3. The soccer project 3.3 Software

� ��� ��� ��� � 	�

����������������
����� ���! "�

�������������#��

$ ��
�� %�� � "�!��&�
��!&����

')(+*�*��-,�.
/�0-1 �.-,������

2 �+� 2 �-� ���

3 � �!465 ')(+*�*��-,�. /�0-1 �.�,������87

������������ 0 � 5 9
: � �;�<� =?>"@ @ A

B 0 ,�C 0�D�D+EF0

B 0 ,�C 0�D�DHG
I-J8K�L+K�I�M /�N C K-O�O<P

�
�Q-� � 2
 �������������*�� : � ���
')(+*�*��-,�. /�0-1 �.�,������R �TS �8� � � : &?� � �� VU-�!S S
���& 2 �!
 3
�W

X)
)�
 2 �
�XY&��!��X-
Z� &Z�

B 0 ,�C 0�D�DHG
J�[/ [-\�M�]+L N C K-O�O<P

������������ 0 �_^
` ������������ 0 �ba

')(+*�*��-,�. /�0-1 �.�,������+c-d)#

X)
)�
 2 �
�XY&��!��X-
Z� &Z�

�6�

�6�

%6
-& %6
-&

Figure 3.12: Adaptive detection of shades

27

Chapter 3. The soccer project 3.3 Software

Consequently, the same shade would be detected all the time. Of course, the ring buffer
scheme in turn has the (minor) disadvantage that it often throws out the wrong shade, so the
other have to be replaced afterwards too.

To test the algorithm, I made a robot move around on the floor pattern and produce a sound
everytime a shade had to be overwritten. It turned out that this only happened in the beginning
and very rarely afterwards. Even when the initial values were completely bogus, there were
three beeps at the beginning (telling that all three shades were being changed), and only fast
changes in lighting lead to another replacement afterwards.

The algorithm works fast enough for my chosen floor pattern and can easily be adapted to
differentiate between more than 3 shades. However, I wouldn’t recommend more than 4 or 5
for the sake of robustness. Also, it should run in a high priority task to avoid irregular sample
timing.

3.3.1.2 Driving along a wall

As already mentioned, I decided to rely largely on an internal world model of the robots.
This implies that a robot must first learn its position and orientation through external input in
order to calibrate its internal model. It’s no use to have a perfect imagination of the world if
it has nothing to do with reality ...

To find an initial position and orientation, I found it extremely useful to let the robot drive
along a wall. The idea is simple: Follow the wall until you bump into another one (signalled
by both touch sensors pressed), then you know you are in a corner. By also examining the
floor pattern (see figure3.11), you can exactly tell your position and orientation – at least
if you were driving in y direction. Otherwise you have to try again by turning a little and
driving along the next wall. This way, you need at most two runs to determine where you
are.

Now the interesting question is how to actually follow the border. First, I tried a variation of
the popular line following algorithm:

• If you currently touch the wall, turn away from it.

• If you don’t currently touch the wall, turn to it.

With some additions to avoid getting stuck, it kind of worked. But as you can imagine, this
rather simple scheme leads to very choppy movement (which is still nicely put). Finally, after
experimenting with different variations, I found the algorithm shown in figure3.133 which
performs very smoothly.

3The figure shows how to follow a wall to the right. To get the counterpart for a wall to the left, simply
replace all occurences of ”left” with ”right” and vice versa.

28

Chapter 3. The soccer project 3.3 Software

����� � ��� � 	
�� �� ����� � �����
� � � ��� ����� � ��� � � � ��� ������� � ����� � ������� � �

! � ��� �������"����� ��� ������� � �

� �� � # ��� �
� $������� � �%	 ��� �

� �� � # ��� �
� � � ��� ���%	 ��� �

����� � ��� � 	
�� �� ����� � �����
� � � ��� ����	 ��� � � & �
 �����"����� ��� ������� � �

� �� � # ��� �
� � � ��� ���%� � ��� �

# 	 ��'�� � � � ���

(� �"����� � � ����� � ��� � 	
 � � � � � � �)	 ��� � � � �� � # ��� �
� $������� � �%	 ��� �

� �� � # ��� �
� ��� ��� � �)	 ��� �

����� � ��� � 	
%� � � ��� � �)	 ��� � � & �
 �����"����� ��� ������� � �

* ������� ��� ��� � �
+ �"'�� � ��� �,��� '��
� � � ��� � ��� ����� ��� �������
� �"��	 ��# * � ��-

� '�	 ��'�� � �'�� ��'
� � ��� � � � � �

� �� � # ��� �
� $��� ��� � �
� � ��� �

 ���

� �

 ���

� �

 ���

 ��� � �

 ���

 ���
 ���

� �

� �

 ���

 ���

� �

� �

� �

Figure 3.13: Wall following algorithm

29

Chapter 3. The soccer project 3.3 Software

This solution is based on three kinds of movement:

Driving In this mode, both left and right wheels turn in the same direction, but one side uses
more power. Without surrounding walls, the resulting path would be a large circle.

Sweeping Similar to driving, but with one side turning very slow or not at all (”float” mode,
see section2.1.1.1). Without surrounding walls, the resulting path would be a smaller
circle.

Turning Means turning on the spot by turning the left and right wheels in different direc-
tions.

To understand how the algorithm works, let’s first take a look at the example of driving along
a wall to the right of the robot. The initial movement in this case is sweeping right (which is
kind of arbitrary). Now let’s assume the robot touches a wall to the right, recognized through
the right bumper. In this case, movement changes to driving left which slowly turns the robot
away from the wall while still driving forward. As soon as the bumper is released, movement
is changed to driving right. When the right bumber is pressed again, movement switches to
driving left etc. The result is a smooth forward movement along the wall without any visible
glitches.

Of course, the above example illustrates the ideal case. Often the robot is in an unfavorable
starting position, e. g. in a corner (see figure3.14). If the robot wants to follow the right wall
in this example, the normal behaviour described above doesn’t work. Instead, an escalation
scheme is employed that makes use of the spring-like behaviour of the flexible tubes attached
to the bumpers:

1. Right and left bumpers are active. Since it wants to follow a wall to the right, the robot
tries driving left.

2. After some time, the bumpers are still active. Out robot gets angry and tries sweeping
left.

3. When it notices that sweeping doesn’t help either, the furious robot decides to turn left.
Together with the spring effect of the right bumper, this is enough to ”break free”.

4. As soon as the right bumper no longer touches the wall, the now calm robot tries
sweeping right – after all, it wants to follow the right wall.

5. Again, it gets stuck. However, this time the situation is a little better (the robot has
turned a bit). It starts again at step 1 with the only difference that the left bumper is
not active anymore. This continues until the robot has turned enough to successfully
follow the standard scheme (driving left and right alternately).

Thanks to the flexible tubes, the same algorithm also works for the initial position shown
in figure 3.15. In this example, the robot also wants to follow a wall to the right. At first,
you might think it would be wise to turn right in this case, but the problem is that the wall
often prevents that – the robot just gets stuck with its left rear wheel. Instead, the escalation

30

Chapter 3. The soccer project 3.3 Software

Figure 3.14: Robot in a corner

Figure 3.15: Robot at a wall

scheme is employed once more. As soon as the turning stage is reached, the spring effect
leads to a slight turn after which sweeping right is tried again. At first this fails, so another
little turn is made. This continues and lets the robot gradually turn while facing the wall.
Finally, it has turned enough so the standard scheme can be applied.

Please note that the robot cannot tell which wall is touched by a bumper. Especially in a
corner situation as shown in figure3.14, the right bumper might either signal the wall to
the right or in front of the robot. This is the reason for the escalation scheme. Without it,
the robot could either choose to turn immediately (good for corners, but choppy movement
otherwise) or not to turn at all (very bad for corners).

In case all the abovementioned measures fail to get the robot out of a tricky situation, the
main program periodically checks whether the robot is stuck. If so, it tries to break free by
executing random movements (see section3.3.3.2).

A disadvantage of the algorithm is that it leaves its marks on the tubes (see figure3.16).
Partly, this is a result of my extensive test runs, but you should take it into account if you’re
planning to copy the setup or parts of it. After a while, of course, the movement becomes
even smoother due to the ”polishing” ...

31

Chapter 3. The soccer project 3.3 Software

Figure 3.16: Unwanted ”polishing”

3.3.1.3 Aligning orthogonally to a wall

The wall following algorithm presented in the previous section is theoretically enough to
calibrate the robot’s world model. However, it takes quite a while to finish. This wouldn’t
be a problem if it was just needed in the beginning. But unfortunately, the world model gets
inaccurate pretty soon and must be recalibrated to function properly. Therefore, I developed
another building block for the robots’ orientation that allows facing a wall in an exact right
angle. This way, bumping into a wall not only delivers positional information, but can also
be used to achieve a defined orientation.

The aligment algorithm (figure3.17) is simpler than the previous ones. If the left/right
bumper is pressed, the robot turns left/right a bit and then drives forward again. This is
repeated until both sensors are active which is interpreted as orthogonally facing the wall.
Sometimes, this is not quite true, but most of the time this scheme works very well. An
important aspect is that the robot drives forward for a while after turning, ignoring all sensor
information. Without this measure, the robot easily gets trapped in an infinite loop as can be
seen in the following scenario:

1. The robot drives across the playfield as suddenly the right bumper is pressed.

2. The robot decides that it’s time for recalibration, so it turns right a bit.

3. Driving forward presses the left sensor against the wall, so the robot turns left a bit.

4. Steps 2 and 3 continue endlessly ...

Even when the robot has reached an orientation that is sufficiently orthogonal to the wall,
often one of the sensors reacts shortly before the other. Driving forward for some time and
meanwhile ignoring sensor input gives the second sensor the chance to react too.

32

Chapter 3. The soccer project 3.3 Software

����������	�
����� ����� ���������

����� � ����� �
��� � ��� ���
� ��� �! "� �

� � ��� ������# ��

$ ��% # % � �"��	�
���"�
��� ���������

���

��	�� ��% � �
�����"� �&% #

��
����� � ����� �
��� � ��� ���
� ��� �! "� �

�! "� �� '% � � �&%

$ ��% # � � �"������	�
�����
��� ���������

���

��	�� ��� � �"���
�����"� �&% #

����� � ����� �
��� � ��� ���
� ��� �! "� �

�! "� �� '% � � �&% # ��

���

Figure 3.17: Orthogonal alignment algorithm

The alignment algorithm also works in very unfavorable situations like the one shown in
figure 3.15. In this case, movement looks similar to the wall following algorithm, except
turning stops when the robot directly faces the wall. In general, between 1 and 4 cycles of
turning and driving forward usually suffice to reach the desired orientation.

3.3.1.4 The world model

By now, the robots are able to initially determine where they are and where they are facing to.
Now all we need is a world model that updates this information without constantly receiving
sensor input. The basic idea is to update the current position and orientation based on what
should happen given the actions carried out (e. g. moving or turning). Once in a while, this
information is updated by looking at sensor input or actively recalibrating using algorithm
3.3.1.2or 3.3.1.3.

The core of the world model is an internal coordinate system. The first system I tried is
very simple (see figure3.18). One unit equals one mm. The placement of the origin and
the directions of the axes resemble the way of representing screen or window coordinates in
a graphical user interface. The current orientation is expressed using the constantsNORTH,
EAST, SOUTH, andWEST.

I restricted turning to a minimum of 90 degrees to keep operations on the world model simple
– the Lego virtual machine is not good at math ... Also, turning cannot easily be controlled
precisely, so you may end up with 80 or 110 instead of 90 degrees. The problem is that
you can only influence the angle via the time used for turning. For example, turning left by
90 degress is achieved by starting to turn, waiting for some time, and then stopping again.
Which time to choose must be determined through test runs with different values. Besides,

33

Chapter 3. The soccer project 3.3 Software

you might think measuring the degrees per second is enough to turn by an arbitrary angle,
but accelaration and braking add non-linear effects. It’s not easy to measure these exactly,
so I determined the turning times seperatly for 90 and 180 degrees. Other values are not
necessary for this model.

���������

�����	���	
����	���

�

�����	�����������

Figure 3.18: World model coordinate system (first try)

The coordinate system shown in figure3.18 is easy to handle, but it has the disadvantage
of being absolute. For example, when the robot moves forward either the current x or y
coordinate must be increased or decreased, depending on the current orientation. The same
is true for calibration by orthogonally facing a wall: Afterwards, either x or y must be set
to either 0 or the maximum widht or height respectively. Althoug trying to avoid them
by using advantagous numeric values forNORTH, EAST, SOUTH, and WESTtogether with
modulus operations, I ended up with a lot ofif statements and logical operators, e. gif

(direction == SOUTH && y < 1300) , if (direction%2 && x > 100) etc. After
a while, I got ”out of memory” messages from NQC when trying to download the program,
so I had to find a way to simplify my code.

The best solution I found was changing the coordinate system so it works robot-relative. This
is depicted in figure3.19. The robot always drives along the y axis, and it’s always facing
towards positive infinity. The origin is placed in the center of the playfield.

The new coordinate system makes it necessary to calculate a new position whenever the robot
turns. For example, if we’re at (100, 50) and turn right, the same (absolute) position lies at
(-50, 100) afterwards. This effect could be avoided by placing the origin at the robot’s current
position, but then the coordinates of the walls would have to be updated with every move.
Instead, with the origin in the center of the field, the wall in front is always placed at y = 700
or 1400 (depending on the current orientation which is remembered in an absolute fashion,
see figure3.19).

34

Chapter 3. The soccer project 3.3 Software

All in all, the new coordinate system made the program about 30 to 40 percent smaller. All
complex operations are executed when turning which I could easily put in a sub routine that
resides in memory only once.

�

�

�

�

� �����������
	

� � �����������
	

�

�

�

�

�

�

� ��������� �����
	

� �������������
	

Figure 3.19: World model coordinate system (final version)

Naturally, there are not only advantages. Above all, the new system requires the ball’s posi-
tion to be translated into robot-relative coordinates upon receiving it as an IR message. Also,
turning not only changes the robot’s position but also the one of the ball. However, this is not
much of a problem and clearly outweighed by the savings in code size.

There is one more issue regarding the world model that needs clarification. As you may have
noticed, I always use the term ”the robot’s position” in the sense of an (inifinitely small) point
with the components x and y. In reality of course, the robot has certain dimensions, so you
have to choose one place that represents it as a whole. Since its position determines what
the robot ”sees”, I decided for the light sensor. Thus, ”the robot’s position” really means
”the light sensor’s position”.4 The advantage is that adjusting the robot’s position is quite
easy this way. More specifically, if a bar of the floor pattern is encountered, you can simply
take the bar’s y coordinate (of course translated into the robot-local system) as the current y
coordinate of the robot. If the robot was represented by a point other than the light sensor,
you would need additional corrections.

3.3.1.5 Robot characteristics

In order to successfully update its internal world model, each robot has to know a little about
itself – how wide it is, how fast it runs, etc. Tables3.1 and3.2 show these figures for the
robots I used.

4Technically, the light sensor isn’t a point either, but it’s sufficiently small.

35

Chapter 3. The soccer project 3.3 Software

Attribute Value Comment

MIN_DIST_LEFT_RIGHT 95 mm Distance from the light sensor to the left
or right edge of the robot. Two times
MIN_DIST_LEFT_RIGHT equals the width of
the robot.

MIN_DIST_TOP 45 mm Distance from the light sensor to the front end
of the robot.

MIN_DIST_BOTTOM 140 mm Distance from the light sensor to the back end
of the robot.

Table 3.1: Static robot characteristics

Attribute Value Comment

TIME_10_DEGREES 40 ms Time needed to turn by 10 degrees.
TIME_90_DEGREES 320 ms Time needed to turn by 90 degrees.
TIME_180_DEGREES 590 ms Time needed to turn by 180 degrees.
DIST_PER_SEC_FULL 500 mm Distance covered when driving one sec-

ond at full speed.
TURN_DIST_NE_X 55 mm Distance along the x axis covered by

turning 90 degrees.
TURN_DIST_NE_Y 70 mm Distance along the y axis covered by

turning 90 degrees.
STEP_BACK_TIME_CORNER 1000 ms Time spent driving backwards to get out

of a corner (see section3.3.3.2).
STEP_BACK_ANGLE_CORNER 130 ms Time spent turning to get parallel to the

walls again after stepping back.
STEP_BACK_DIST_X_CORNER60 mm Distance along the x axis covered while

stepping back.
STEP_BACK_DIST_Y_CORNER345 mm Distance along the y axis covered while

stepping back.

Table 3.2: Dynamic robot characteristics

36

Chapter 3. The soccer project 3.3 Software

Regarding the dynamic characteristics, there are two special numbers that need some expla-
nation: TURN_DIST_NE_X5 andTURN_DIST_NE_Y. To understand these, you first have to
consider that the robot’s position is really the light sensor’s position, but the robot doesn’t turn
around the light sensor. For this reason, the position changes with each turn. Even worse, x
and y change differently. When the robot turns 360 degrees, the differences annul each other,
but when it turns 180 degrees left, then 180 degress right, then again left and so on, the robot
in fact slowly moves away from its starting point! This is reflected byTURN_DIST_NE_X

andTURN_DIST_NE_Y. TURN_DIST_NE_Xmeans the offset from the original x coordinate,
TURN_DIST_NE_Ymeans the change in y direction. Please note that the coordinate system
changes when turning (see3.3.1.4), and that the offsets just mentioned are interpreted in the
system that was in effect before the turn. Thus, executing a turn modifies the world model in
the following way:

• TURN_DIST_NE_Xis added (right turn) or subtracted (left turn) from the current x
position.

• TURN_DIST_NE_Yis subtracted from the current y position.

• The current orientation is changed (easy due to appropriate numerical values for the
NORTH, EAST, SOUTH, andWESTconstants).

• Current x and y coordinates are changed to reflect the rotation of the coordinate system
(see figure3.19). For example, (100, 50) becomes (-50, 100) after turning right by 90
degrees.

An annoying fact is that all dynamic constants change significantly with decreasing battery
power. To put it differently: the weaker the batteries, the greater the difference between
model and reality. Since the current battery level can be read by the running program, the
values could be adjusted accordingly. However, the results probably wouldn’t be very ac-
curate, and a lot of experiments would be necessary to determine the adjustment factors or
offsets. Besides, the dynamic constants would have to be changed into variables to make
them adjustable – and the Lego firmware doesn’t provide many of these (see section2.1.1.1).

3.3.2 Where is the ball?

3.3.2.1 Using Vision Command as a smart sensor

As described in section2.2.7, the standard Vision Command software takes complete control
over the RCX. In order to get it back, I used the method presented by Michael Gasperi in
[Gas] which effectively turns the camera into a smart sensor. The RCX can run an arbitrary
program and receives a message every time something is recognized in the image.

Given this possibility, finding the ball should be simple, I thought. The VC software can
recognize color, so all I needed to do was to devide the playfield into regions (see figure3.3

5”NE” stands for ”north east” and means this distance is covered when turning from north to east.

37

Chapter 3. The soccer project 3.3 Software

on page20) and tell VC the color of the ball. The software would then send IR messages
about the region containing the ball, and the robots could start to play. There was just one
tiny little problem with this (in every sense of the word ”tiny”) ...

The camera must be mounted high enough to overlook the whole playfield. However, a tennis
ball from this height and with an image resolution of 320x240 as used by the Vision Com-
mand software has a diameter of only about 18 pixels. Of course, not all of these resemble
the overall color closely, so we’re left with only a handful of correctly recognized pixels.
Now you have to know that the Lego software requires a region coverage of at least 1 percent
to say ”yes, I really see the specified color here”. In the pattern I use all of the 8 regions have
a width and height of 80 pixels in order to take up as much space as possible. Otherwise,
the camera would have to be mounted even higher. Unfortunately, 1 percent of 80x80 pixels
yields 64 pixels, and this is more than the software ever recognized from the ball, no matter
what color or camera settings I tried.

At that point, I had two alternatives. I could either write the recognition software all on
my own, or I could try to tweak the Lego software. Since I figured it would be easier, I
decided for the latter (more about that in section4.2). The question was: How do I improve
recognition of small areas of a distinct color without turning the Lego software inside out?
The answer is given in sections3.3.2.3and3.3.2.4, but first I want to describe some technical
basics on which I have built.

3.3.2.2 Excursion: USB cameras and WDM streaming drivers

Windows WDM streaming architecture The Lego cam contained in the Vision Com-
mand set is a standard CCD camera connected to the host via the Universal Serial Bus (USB).
It provides video and audio streams as well as still images. Under Microsoft Windows 98,
2000, and all newer versions, such streaming devices are usually accessed through theWin-
dows Driver Model (WDM) streaming architecture(short WDM streaming). WDM as a
whole is intended to simplify driver development and make a single binary device driver
work on both Windows 9x and NT based systems. WDM streaming adds an additional layer
to this model that supports fast processing of synchronous multimedia streams.

A lot of streaming functionality is identical for a great number of devices, so it makes
no sense to include that in every device driver. Instead, Windows provides the so-called
stream class driverincluding generic stream handling, while hardware vendors only write a
minidriver for each specific device. The minidriver is responsible for actually communicat-
ing with the device and is called by the stream class driver when necessary.

Figure3.20 shows the control and data flow from an application all the way down to the
device. Please note that each transition from user to kernel mode is time consuming due to
necessary validations and copying of data. The upper and lower filter drivers shown in the
figure are covered in the next section.

38

Chapter 3. The soccer project 3.3 Software

������� � �	��
�� ��

��� �����	
����	��

� ��������������� ���"!#� �
����"$%�&� ' ���

�(
#�������)�*� ��+	+,$��-� '	���". � ���/�����0$��1� ' ���

� ����������� ��2����!3� �
4���"$5�&� ' ���

67�98;:2��<=8(�>+,$��-� '?���

67�98;:��+	
 � ��
3�@�� � ���A8(� +,$5�&� ' ���

B �DC 8(�>+,$��-� ' ���

Figure 3.20: WDM streaming driver layers
(Source: [Mic99])

39

Chapter 3. The soccer project 3.3 Software

Each driver in the WDM streaming architecture is also called afilter6. Filters do not neces-
sarily access a piece of hardware but may also just alter a video or audio stream. Each filter
has one or morepins that allow connecting it to other filters. This way, a filter chain can be
built that processes a stream in various ways. Since all the filters are kernel mode drivers,
no transition to user mode takes place inbetween, and all filters can work on the original
buffer without copying data. Thus, WDM streaming is clearly the fastest way to manipulate
multimedia streams under Microsoft Windows.

One question is still open: Since an application usually doesn’t ”talk” directly to kernel mode
drivers, how can it finally access the processed streams? This is achieved using theKernel
streaming proxy module (KSProxy). KSProxy is aDirectShowfilter that represents arbitrary
kernel mode drivers. By wrapping the last driver in a kernel mode filter chain with a KSProxy
instance, an application can access the stream like any other DirectShow stream.

More information about WDM streaming, including KSProxy, can be found in the Windows
98 Driver Development Kit (DDK) [Mic99]. DirectShow is described in detail in [Mic01].

Filter drivers The upper and lower filter drivers shown in figure3.20enable interception
and manipulation of commands and data passed to and from a driver. Since this is done
transparently and without the need to change any drivers or applications sitting on top, a
filter driver is ideal for improving recognition of the ball. It can simply take the camera
image, search for the ball, and amplify it so the Vision Command software ”sees” it too. The
difference between upper and lower filter drivers is evident from figure3.20. Since we want
to intervene after a stream frame has been received and processed by the camera driver but
before it goes up to the application, we need an upper filter driver. Note that filter drivers can
also be installed for class and bus drivers.

Communication with a driver occurs usingI/O request packets (IRPs). An IRP tells the driver
to do something, e. g. initialize itself or go to sleep mode. Each IRP has a major and a minor
function code. For example, the major codeIRP_MJ_FLUSH_BUFFERStells a driver to
flush its buffers. All streaming operations are performed usingIRP_MJ_DEVICE_CONTROL.
Within such packets, an additionalIO control code (IOCTL)specifies the desired operation,
e. g. IOCTL_KS_READ_STREAMto capture a frame.

Filter drivers usually pass on all IRPs unchanged except those they want to filter. To suppress
a request, the filter simply doesn’t pass the IRP to the driver but indicates to the caller that
the request has completed succussfully or failed. To manipulate the data resulting from a
read request, the filter passes on the relevant IRPs and registers anI/O completion routinefor
each of them. The reason is that calling the original driver may only initiate a DMA transfer,
so no data is available at first. The completion routine on the other hand is only called when
the request was fulfilled, thus ensuring that all data has been received and can be changed.
In case of write requests, the data is already available when the request is made, so it can be
manipulated directly.

6Please note that this is not the same as afilter driver.

40

Chapter 3. The soccer project 3.3 Software

Finally, you should know something aboutdevice objects. A device object is a data structure
that is maintained by the system for each instance of a device, device driver, and filter driver.
Device objects come in three flavors:

Physical Device Objects (PDOs)are created by the ”parent” of a device, e. g. by the USB
bus driver in case of a USB camera. Their main purpose is to handle power manage-
ment and Plug and Play.

Functional Device Objects (FDOs)are created for every instance of a ”normal” driver (also
calledfunction driver).

Filter Device Objects are created for every instance of a filter driver.

Each device object carries information about the device, the associated driver, the current
IRP, etc. Besides that, every device object points to a so-calleddevice extensionwhich is a
global storage area usable by the driver. Since the device object is passed to most of a driver’s
functions, its the best place to store global information. The size of the device extension can
be specified by the driver. For each device, the PDOs, FDOs, and filter device objects form a
stack. Figure3.21shows how this stack looks like in case of the Lego cam.

More about filter drivers can be read in the Windows 98 Driver Development Kit (DDK)
[Mic99]. The DDK also includes examples that can be used for own experiments.

3.3.2.3 Writing a filter driver

In order to amplify the ball, I wrote a filter driver for the Lego cam based on the USB filter
example from the Windows 98 DDK [Mic99]. Since I’ve never written a WDM driver before
– and since this thesis is not really about driver development ... –, the result is somewhat
crude. A ”proper” filter should present itself as a stream source and in turn act as a client
to the underlying driver. Instead, I interceptIOCTL_KS_READ_STREAMand manipulate the
captured frames as needed. The disadvantage is that the filter driver cannot handle different
data formats and thus only works with the Lego cam. For the same reason, it cannot be
installed as a class filter handling arbitrary video input sources. However, it does what it’s
supposed to do.

For the sake of brevity, the filter driver is referred to as thecam filterin the following sections.

Installing a filter driver Filter drivers are installed using special registry entries. First,
you have to locate the registry key for the driver that should be filtered. In the case of the
Lego cam, the key is located here:

HKEY_LOCAL_MACHINE\Enum\USB\
VID_046D&PID_0850&MI_00\0USB&VID_046D&PID_0850&INST_07

7Note that this is the key for video capture. There is another one for the built-in microphone of the camera.

41

Chapter 3. The soccer project 3.3 Software

��� � ������	���
�� �������������

���������� ��������	���
�� �������������

 "!�#�$�� �����	���
�� �������������

���������� ��������	���
�� �������������

 "!�#�$�� �����	���
�� �������������

���������� ��������	���
�� �������������

 "!�#�$�� �����	���
�� �������������

���������� ��������	���
�� �������������

 "!�#�$�� �����	���
�� �������������

% ��&'�����

(�)'*,+-���

(�).*
+���$��
% �������/�"� � �0�

 %21 *"��$

% ��&'�3����4�� � �����653�7�
��0�

)"���/����&8�� ��$�$95��:�
��;��<
% ��&'�3����5��:�
=�0�

(�)'*,+>����*;��$95��:�
=�0�

(�)'*,+>����*;��$95��:�
=�0�

(�)'*,+���$�� % �3�����/���/� �0�
*"��$?53�@�
��0�

(�)'*,+���$�� % �3�����/���/� �0�
*"��$?53�@�
��0�

 %21 *;��$?5��:�
��0�

 %21 *;��$?5��:�
��0�

A�������*"��$?53�@�
��0�

Figure 3.21: Device Object stack
(Source: [Mic99])

42

Chapter 3. The soccer project 3.3 Software

To specify upper and lower filter drivers, the values ”UpperFilters” and ”LowerFilters”, re-
spectively, must be added to this key. There can be more than one filter driver of each type.
Under Windows 2000 and up, the registry values are of typeREG_MULTI_SZwith one string
per filter driver containing the name of the driver file. Under Windows 98 and ME, these are
REG_BINARYvalues consisting of a concatenation of all driver names, each of them zero-
terminated, and a final zero byte at the end.

Reading and manipulating frames As mentioned, the cam filter is based on the USB
filter example from the Windows 98 DDK [Mic99]. However, the example itself didn’t work
properly at first. Originally, the physical device object (see figure3.21) was used to pass
IRPs down the stack. This way, the functional device object and thereby the Lego cam driver
were skipped, so no image showed up. After routing the call to the next lower device object
instead, it worked.

The image data is manipulated by interceptingIRP_MJ_DEVICE_CONTROLwith an associ-
atedIOCTL_KS_READ_STREAM(see section3.3.2.2). Information about the image is con-
tained in theKSSTREAM_HEADERstructure passed with this IRP.

Before the cam filter does anything, it checks whether theFrameExtent field in the stream
header equals 230400 (or 320 x 240 x 3). This way, it is ensured that there is valid buffer
memory, so manipulation is safe. If the check fails, the Lego cam driver is called and no
further action is taken. The buffer receiving the actual image is pointed to in theData field
of the stream header. In case of the Lego camera, the pixels are stored in 24 bit blue-green-red
(BGR) format and organized from bottom to top, left to right.

After calling the driver – and providedFrameExtent had the expected value –, we could
start changing the image. However, without waiting for completion of the data transfer, we
don’t know how many pixels have already been read. Therefore, the cam filter registers a
completion routine to ensure the whole frame has been transmitted from the camera.

The completion routine is theoretically the right place to make changes to the image. Indeed
this worked perfectly when using a simple video capture application. However, Vision Com-
mand and the underlying Logitech camera software made the cam filter crash. After a while,
I found out the completion routine is called in another context than the IRP handler in this
case. As a result, the pointer to the image data is invalid within the completion routine, and
any access leads to a bluescreen. To resolve this, I changed the IRP handler to wait for an
event signalled by the completion routine. Thus, the IRP handler can safely alter the image
while still waiting until all pixels have been received.

Unfortunately, the abovementioned method did not always work. At times, only parts of the
image were changed, as if there was no synchronization at all. It turned out that another IRP
came in before its predecessor was completed, so the completion event waking up the IRP
handler actually belonged to theprevious request. To avoid this, I installed a counter that is
incremented with each IRP and decremented with each call to the completion routine. Only
when the counter reaches zero again, the event is signalled. Of course, this procedure could
lead to slower performance, but I couldn’t discover any such effects.

43

Chapter 3. The soccer project 3.3 Software

In summary, the technical frame of the cam filter performs as expected. Nevertheless, I
would have implemented it differently with a little more WDM streaming knowlegde. A
”proper” filter driver should not just intercept communication between the camera driver and
applications – this might lead to stability problems or loss of performance as pointed out
above. Rather, it should present itself to the higher layers as a video stream source and in
turn act as a client to the original driver.

3.3.2.4 Finding and amplifying the ball

The previous section showed the system-technical details of manipulating the Lego cam’s
image before it arrives in the Vision Command programming environment. Now I’d like to
explain how the ball can be found even under unfavorable circumstances such as non-uniform
lighting.

Basic technique Finding the ball doesn’t seem to be a difficult task – just look for pixels
of the right color, and that’s it. The first version of the cam filter exactly worked this way.
Given the ball’s color as RGB values, it looked for similar colors in the image using a con-
figurable tolerance. However, the results were not very impressive, mainly because of the
following points:

• The Lego cam’s image is of poor quality, especially over a distance of 1.6 meters as
needed in the soccer environment.

• It’s difficult to get good lighting for the arena. In my workplace, the ceiling lights
interfered with the camera image by producing flickering horizontal stripes, so I turned
them off. Since I didn’t want to use a huge flood light to compensate for this, some
corners are always darker than the rest.

• The camera produces color fringes at edges with sharp contrast. This is a side effect of
the CCD technology and the low resolution of the Lego cam. Unfortunately, some of
these fringes contain pixels similar to the pink ball I used.

As for the non-ball pixels that are detected, I developed a simple solution that can at the same
time be used to amplify the ball. The problem is to find a cluster of pixels with certain mini-
mum dimensions and ignore smaller ones. This way, (hopefully) only the ball is recognized
while fringes and noise are not considered.

Figure3.22shows how this is achieved. An array of dimensions 320 x 240 elements holds
a ”weight” for each pixel. The higher the weight, the more likely it is that the pixel actually
belongs to the ball. At the beginning, all weights are initialized to 0. For each ”ball candi-
date” pixel, the weight array is incremented by 1 in a circular area around it. For example,
figure3.22shows three ball candidates (marked with small circles). The incremented areas
are marked with R, C, and X respectively. A square containing one letter stands for a weight
of one, a square with two letters for a weight of two, and a square with all three letters for

44

Chapter 3. The soccer project 3.3 Software

� � � � � � ���

� � � � � � ���

� �
�

� � � ���

� � � � � � ���

� � � � � � ���

� � � � � ��

� � � � � ��

� � � � �

� � � � �

� � � � � � � � �

� � � � � � � � �

� � � �
�

� � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � �

� � � � � � �

� � � � �

� � � � �

� � � � � ����

� � � � � ����

�
�

� � � ����

� � � � � ����

� � � � � ����

� � � � ���

� � � � ���

� � � ��

� � � ��

Figure 3.22: Example for using ”weights” to find the ball

a weight of three. At the end, all pixels with a weight above a certain threshold are colored
bright green in the actual image, so the Vision Command software cannot miss it.

Besides finding its pixels, this method can also be used to enlarge the ball. The higher the
radius of the ”increment circle”, the larger the amplified ball image. You just have to be
careful to increase the weight threshold together with the radius to avoid false recognitions
(it’s easier for the increment circles of disturbing pixels to overlap when the radius is greater).

Technically, the weight array resides in the cam filter’s device extension (see section3.3.2.2),
so it is allocated only once for each driver instance. The camera image itself is not copied
but manipulated in place.

Color spaces One of the problems mentioned above is that there are lighter and darker
areas in the image. However, the cam filter should recognize the ball no matter where it
is. To achieve this, I had to change the color model from RGB to HSV (Hue - Saturation -
Value, see [FvDFH96]). HSV is much better suited to the problem since it allows detection
of a certain color (= hue) no matter how saturated or bright (= value) it is.

Implementing an RGB/HSV conversion is not a big thing - except if you cannot use floating
point math. Due to some strange limitations, a WDM driver can only use the floating point
(FP) unit if it performs initialization and saving/restoring of FP register values on its own. Of
course I could have included the necessary assembler instructions after ”some” research, but
I decided to employ a simple fixed point math solution instead with each number represented
by 32 bits. 16 bits are used for the integer and 16 bits for the fractional part.

After successfully implementing the conversion to HSV, ball recognition became much bet-
ter, but performance also went down notably. As a consequence, I started to ignore all pixels
at an uneven x or y coordinate, effectively reducing the resolution to 160 x 120. This doesn’t

45

Chapter 3. The soccer project 3.3 Software

present a great loss of information since color is sent by the camera at this resolution anyway
(YUV model with 4:2:0 downsampling), resulting in 2x2 blocks of recognized/unrecognized
pixels. Before switching to HSV, this effect was not present since RGB distributes luminance
and chrominance over all three components.

Customization To customize the filter, a set of registry values is used that must be placed
under the key of the Lego cam driver (see section3.3.2.3). The cam filter reads them ev-
erytime a frame is processed, so changes can be made on the fly. The following values are
supported (allDWORDs):

_color The color of the ball in HSV format: 0xHHSSVV.

_radius The radius of the ”increment circles” as described above.

_replacement The color used for the enlarged ball in RGB format: 0xRRGGBB. This is
what Vision Command gets to see.

_showFireflies If this value is different from 0, the ball is not amplified but all recog-
nized pixels (i. e. having a color similar to the ball) are inverted. This way, the other
values and the camera settings can easily be adjusted for best results. The name comes
from dark pixels looking like fireflies when inverted (see figure3.23).

_tolerance The tolerance regarding H, S, and V. For example, the value 0x1840ff means
that devitations of up to 0x18 (H), 0x40 (S), and 0xff (V) from_color are tolerated
when looking for ball pixels. The deviations are absolute, not relative. In the example,
any value for V is accepted since a deviation of more than 0xff cannot happen, no
matter what_color contains. Pixels for which H cannot be determined (shades of
gray) are generally ignored.

_verticalFilter When different from 0, makes the cam filter ignore narrow vertical
lines of recognized pixels. This measure helps reduce the effect of color fringes.

_weight The weight threshold for recognizing ball pixels.

A command line tool for installing the cam filter and modifying these values can be down-
loaded from [Juna].

Summary The camera filter driver enables Vision Command to recognize the ball. You
can see the effect by looking at figure3.23. The leftmost picture shows the original image,
the one in the middle emphasizes the pixels recognized, and the rightmost is what Vision
Command gets to see. On the PII/350 machine I used, the filter introduces an additional
latency of less than half a second. This means that motion is still shown fluidly, just a little
delayed. Given the needs of the robots, this is perfectly tolerable. I suppose my crude WDM
driver code is the reason why there is a visible latency at all. Also, it only occurs in Vision
Command and the Lego QuickCam software. A simple video capture application shows the
filtered stream almost without delay.

46

Chapter 3. The soccer project 3.3 Software

There are still two important possible improvements to the cam filter. First, the weight thresh-
old could be determined automatically by the filter. The simplest way of doing this would be
to take the maximum weight encountered and use it as the threshold (provided it exceeds a
certain value). The advantage is that lengthy experiments for finding the best_weight could
be avoided. This isn’t already implemented simply because I thought of it only a few days
before my deadline ...

The second improvement would be to let the filter adept itself to different lighting situations
like the floor pattern algorithm shown in section3.3.1.1. Also, the filter could try to determine
the ball’s color itself, maybe by trying several possibilities and looking at the result until
exactly one round object of the expected size is found.

Figure 3.23: The cam filter at work

3.3.2.5 Broadcasting to several robots

Besides limited recognition capabilities, using Vision Command as a ball finder has another
big hitch. When sending out an IR message, VC checks whether there is a response. If not,
it displays an error message and stops the recognition. With only one robot on the field,
everything is fine. However, when two or more RCX bricks are present, interference leads
to a garbled response, and VC stops processing. Even worse, VC sends out ”keep alive”
commands periodically, so turning on more than one RCX in reach of the IR tower is already
fatal, even when no recognition messages are sent.

To solve this issue, I looked at the path of communication from Vision Command to the
RCX. To translate Mindscript, download programs, and send direct commands to the RCX,
Vision Command uses a DLL namedVPBrick.dll . I figured that the easiest way of su-
pressing error messages would be to fool Vision Command into thinking that every message
transmission is successful. To achieve this, I tried to insert a proxy DLL as as shown in figure
3.24. Its purpose is to route all calls to the original DLL and only intervene under certain
circumstances.

I already had some experience with DLL proxies before (see [Junb]), but the problem with
VPBrick.dll was that all exported symbols are ”decorated”, i. e. their parameters are coded
into the symbol name like this:

?vpbExec@@YAJJPAVReaderWriter@@PAJ0P6GHJPAXJ0@Z2@Z

After some research, I found out that one can decipher this into the real parameters using the
Windows API functionUnDecorateSymbolName :

47

Chapter 3. The soccer project 3.3 Software

������� �	�
�

�������� ���
� ��� �

��� ��� �������������������� ! 	� � �
�	"#� ���

��$�!�
%'&)(*(

�������� ���,+!��-� .�� ��� � /'-� .�� �0���
&�(!(

1324"3�!5���

Figure 3.24: Vision Command RCX communication

long __cdecl vpbExec(long,class ReaderWriter *,long *,
class ReaderWriter *,
int(__stdcall*)(long,void *,long,class ReaderWriter *), void *)

With the help ofUnDecorateSymbolName , I could build a proxy DLL with exactly the
same functions as the original. At first, every proxy function was written in a way that just
its original counterpart was called. After successfully testing this, I made the proxy write a
log containing which functions where called with which parameters and return value at what
time. Consequently, I was able to figure out that thevpbExec function is responsible for
sending regular RCX messages as well as keep alive commands. After looking at the return
values in case of success and failure, I found out how to modifyvpbExec in the proxy DLL
to fool VC into thinking that sending a message is always successful.

With the proxy in place, Vision Command can broadcast IR messages to several RCXs with-
out stopping because of a garbled response. Up to now, I could not detect any negative effects
of the manipulation. However, problems may arise when increasing the number of involved
RCXs (yet to be tested). The only point you have to consider is that VC downloads a small
program to the RCX when a recognition program is started. Since there is no way of simul-
taniously downloading a program to more than one RCX, you have to stick to the following
sequence:

1. Turn on one RCX only and start the Vision Command program.

2. Wait until VC finishes downloading the generated program to the RCX.

3. Only now turn on the other robots.

If you want to use the proxy DLL for own experiments, you can download it from [Juna].
To install it, simply rename the fileVPBrick.dll in the Vision Command folder toVP-

Brick_orig.dll and copy the proxy DLL to this folder. Important: Use exactly the name
VPBrick_orig.dll for the original DLL – else the proxy won’t find it. Also, be careful not
to accidentally overwrite the original DLL, or you’ll have to reinstall the Vision Command
software.

48

Chapter 3. The soccer project 3.3 Software

3.3.3 The main program

3.3.3.1 Strategy

Having spent so much time on solving technical problems, I could only implement a simple
but nevertheless effective playing strategy. The main idea is to drive the ball towards the
opponent’s goal while avoiding own goals. To achieve this, the robot employs an ”always
get behind the ball” strategy. Additionally, it tries to calibrate its world model on every
favorable opportunity. The resulting behaviour can be seen in figure3.25. This example
shows the route taken by the robot to get behind the ball. When driving towards a wall, the
robot always uses the opportunity to align orthogonally to it, hence losing some time but
retaining a more accurate world model. Please note that the dotted lines in the figure indicate
backwards movement.

�
�

� ��� ����� 	�
������
������

� ����������� 	�
������
������

��� 	������ ������� ��� �

� ��� �

Figure 3.25: Playing strategy

As you could read in section3.1.2, the robot just knows the ball’s position by region, not
exactly (figure3.25indicates the region borders in gray). To compensate for this, the robot
checks whether it has failed to hit the ball by comparing its current position to the last one.
If both are identical, the ball hasn’t moved (at least not much), so it must be somewhere
else in the region. First, the robot drives backwards, turns a bit to the middle and drives
forward again. Both driving backward and forward are timed in a way that a distance equal
to a region’s width is covered. If this fails too, the robot goes back again and turns a little
towards the wall. Now it doesn’t simply drive forward, but rather goes into the mode of
finding an initial position using the wall following algorithm (see section3.3.1.2). This has
two advantages: First, the ball often comes to lie close to the border or even in a corner. The
only reliable way I found to get it out again was using the wall following scheme. Second,
its sometimes necessary to repeat the inital positioning – just aligning to every wall that is
encountered cannot correct all errors, e. g. not being able to make a turn without noticing it.
The latter can make the world model wrong by 90 degrees, leading to a very confused style
of play ...

49

Chapter 3. The soccer project 3.3 Software

3.3.3.2 Utilities and gimmicks

Getting confused It’s very unusual, but getting confused can indeed be very helpful.
How does this work? The robot increments a counter everytime a bumper is pressed unex-
pectedly. For example, if the robot drives towards a wall and expects to need two seconds for
this, but after half a second a bumper is pressed, this counts as ”unexpected”. If the number of
unexpected inputs between two calibration events (e. g. aligning at a wall) exceeds a certain
limit, there is probably something wrong with the world model, and the robot reinitializes
itself completely. Of course unexpected contacts also happen when bumping into another
robot. This is why there is a counter instead of getting confused instantly.

Unblocking More often than you think, a soccer playing robot experiences a simple yet
annoying problem - getting stuck. I’ve seen quite a variety of such situations, and the follow-
ing list is far from complete:

• A robot has lost orientation and desperately drives against the same wall again and
again and again.

• A robot ”climbs up” the ball (see figure3.26) and can’t manage to climb down again.

• With the help of the ball, a robot manages to climb up the wooden frame (see figure
3.26).

• Two (or more) robots crash and try in vain to drive where they want to.

• Two robots get entagled with their bumpers.

Some of these situations could be detected using a rotation sensor, others not. For this reason
– and also because I wanted to stick with one Robotics Invention System per robot – I decided
not to use it. Instead, two techniques are employed. First, it is checked whether the light
sensor input doesn’t change notably over some time. This is an almost certain sign of being
stuck. Second, a simple timeout guards against weird situations where the robot is still
moving but cannot really get anywhere – which happens surprisingly often.

After realizing that it is stuck, the robot uses a simple unblocking technique: It selects a
random movement like turning left or right or driving forward. After executing it for some
time, the next one is chosen. This is repeated 6 times, hoping that the blocking situation is
resolved afterwards. In case of failure, the timeout or the light sensor check triggers another
try after a while. Usually, the problem is solved after 1 to 3 unblocking rounds. Of course,
the robot completely loses orientation in the process, so it always tries to reach an initial
position again after unblocking (see section3.3.1.2).

Goals It always adds to the joy of watching autonomous robots if they show ”emotions”
suited to the current situation. For this reason, I wanted them to react to goals by shaking
their head (own goal) or driving around joyfully while making music (successfully scored).

50

Chapter 3. The soccer project 3.4 Put to the test

Of course, the robots must recognize goals to do this, which is not a trivial problem. You
could use Vision Command’s region scheme for this by introducing additional goal regions.
However, this would reduce the number of regions available for the playfield, thus making it
more difficult to find the ball. The next possibility would be to place another RCX close to the
playfield and put bumpers with touch sensors into the goals. The additional RCX could then
transmit goals to the robots as IR messages. However, in order to keep it simple, I decided
for yet another alternative: The two leftmost and rightmost regions (see figure3.25) are the
goals. This way, it is very simple for the robots to recognize a goal and react accordingly.
Also, it is sometimes the only way to tell which robot plays in which direction ...

Stepping back A disadvantage of the initial positioning described in section3.3.1.2is
that the robot stands in a corner when it has found out where it is. In this position, it is
impossible to turn or to drive forward – the only working movement is driving backwards.
To make things easier for the strategy part of the program, I developed a ”step back” routine
that drives out of a corner backwards, but with a little drift towards the middle. However,
after the robot is far enough from the wall, it is no longer aligned with the walls exactly, i. e.
a non-rectangular angle is involved (caused by the drift). To correct this, the robot turns back
a little. Finally, the world model is updated to reflect the new position. The strategy part can
now safely make turns and be sure that at least the walls do not hinder the robot.

Fair play In order to facilitate a fair match, you have to avoid situations in which a robot
completely blocks access to the ball. Therefore I force my robots to random movements
regularly, even when the ball is in the opponent’s goal, so the game always continues without
human intervention. If the robots were more intelligent, I would have needed additional mea-
sures, like preventing intentional crashes etc. The way they play now, that’s not necessary.

3.4 Put to the test

After putting all the pieces together, the robots could finally test their abilities in the arena.
To verify the general strategy, I started with a single robot. Much to my surprise, it went
really well. You could see clearly what the robot was trying to do, and it managed to get
the ball out of all difficult situations. The only problem was that the ball often bounced back
from the frame after scoring a goal and went straight to the robots own goal ... Nevertheless,
the player always managed to keep the ball in the opponent’s goal after a while, so you had
to take it out by hand to keep the game running.

Next, two robots were sent into the arena and left to their own devices. Now it turned out
that their dependency on the frame to keep their orientation is very hindering. Very often,
one robot blocks the way to a wall the other is about to reach. As a result either the world
model gets screwed or the two robots get entangled. However, as soon as a robot manages to
establish a proper world model, it plays quite well and visibly enjoys its success (see section
3.3.3.2). Also, all blocking situations are resolved by the robots themselves.

51

Chapter 3. The soccer project 3.4 Put to the test

It’s hard to describe here how funny it is to watch the little fellows play, especially the situ-
ations when one places a nice shot and the other can only shake its head ... To give you an
impression, some playing scenes are shown in figures3.26and3.278.

It should be noted that human interference was hardly ever necessary during the test matches.
With a bit of patience, you can let the robots solve their ”conflicts” all on their own. The only
situation that requires intervention is when a wheel falls off or a similar ”accident” occurs.
Regarding the ball, I have never seen a situation where the ball went somewhere and none of
the robots could get it out again.

In the beginning, I planned 2 on 2 matches, maybe with one designated goalie per team.
However, the arena turned out to be far too small for that. On the other hand, making it larger
is bad for ball finding (see sections3.1.2and4.2). Thus, I had to stick with one-”man” teams.
What I also didn’t test is using different strategies for the opponents. I was alreay happy to
find oneapproach that worked reasonably welland fit into the RCX’s memory ...

8These are actually faked since it’s not easy to get the shots you want in the middle of the action.

52

Chapter 3. The soccer project 3.4 Put to the test

Figure 3.26: Master climbers

53

Chapter 3. The soccer project 3.4 Put to the test

Figure 3.27: Go go go ...

54

4 Conclusions

4.1 Useful results

This thesis shows that it’s possible to make Lego Mindstorms robots play soccer without any
special hardware – ordinary RIS sets and a Vision Command camera are all that is necessary.
What I did not achieve is realizing other ways of Mindstorms robots working or playing
together since the soccer project took much too long. However, there are some achievements
that I think are useful in other Mindstorms projects too:

• The proxy DLL (section3.3.2.5) is useful for every environment in which Vision Com-
mand must broadcast to several robots.

• The camera filter (section3.3.2.4) significantly improves Vision Command’s recogni-
tion capabilities when it comes to small colored objects.

• The alignment and wall following algorithms (sections3.3.1.2and 3.3.1.3) can be
helpful in any environment involving walls or other obstacles.

• The adaptive light sensor algorithm (section3.3.1.1) can be employed in all situations
where patterns on the floor must be recognized and lighting isn’t constant or uniform.

All of these are freely available at [Juna], including source code. An excerpt of the NQC
source is also shown in appendixA. If you have any questions or comments, please contact
me via eMail (mailto:juan0014@fh-karlsruhe.de).

Besides getting familiar with Lego Mindstorms, working at the soccer project also taught
me that it’s often much easier to solve something in the form of hardware (e. g. ”intelligent
balls”) rather than software. Instead of improving playing strategy, I spent weeks just to let
the robots roughly find the ball.

Nevertheless, software has one big advantage: You can easily make it available to a wide
audience via the World Wide Web or FTP. Everyone with an internet connection and a toy
dealer in range can copy and improve the setup. If someone finds a great new strategy, he
or she can send it to you, and you can test it against your own. If someone else constructs
a better robot, you can build it and equip it with your own software. If something doesn’t
work, you can always find help on the Net. And thanks to Lego Mindstorms, you actually
see moving robots instead of simulated scenarios, you hear it crack when they crash, and you
see the marks they leave on the playfield ...

55

mailto:juan0014@fh-karlsruhe.de

Chapter 4. Conclusions 4.2 Possible improvements

4.2 Possible improvements

Before starting with this thesis, I merely knew that Lego Mindstorms existed and that it had
something to do with Lego and robots. Though trying to accumulate Mindstorms knowledge
fast, I missed some clues on the way that would have greatly improved things.

Mainly, I was too focused on what was there (Vision Command and accompanying software)
rather than what I needed. If I was to do it all again, I would drop the VC software completely
and process the camera image on my own. In fact, I’ve already done this with the filter driver,
but there’s still Vision Command’s restriction to 8 regions. Besides, doing it all myself would
also solve the broadcasting problem (see section3.3.2.5) without the need to hack the Lego
software. The code for talking to the IR tower could be copied from NQC (as the source is
available, see [Baua]).

Using the original Lego firmware imposes some unnecessary restrictions too. The reason
why I wanted to stick with it was to make it easy to copy and improve the environment. Now
I know that it would have been worth it to switch to leJOS [Sol] or another firmware replace-
ment. Not only do they allow to program in Java or ”real” C, but they are also considerably
smaller. This way, I could have easily avoided my constant struggle with out of memory
errors.

Another big issue are the robots themselves. I focused largely on the software side of de-
velopment, but I think modifying the robots in the right way could have worked wonders.
However, I’m no specialist in Lego construction. When my son gets older, he will hopefully
build better soccer robots for me ...

When it comes down to strategy, there’s also a lot of work left. Most importantly, recognition
of other robots should be improved. This could be done by having the robots send messages
about their position, so it could at least be detected if the bumpers are pressed against a wall
or another robot. Of course, this only works right when the world model of the sender is up to
date. Also, ”IR jam” could result when the robots all send at the same time. Next, calibration
leaves much room for improvement too. Right now, there is a lot of running into walls to
adjust the current orientation. I guess at least half of the walls could be skipped for the sake
of fluid play and less collisions. Also, the floor pattern is hardly used yet. The bars are
currently only taken as a direction indicator when finding an initial position, but they should
also be employed to update the world model regarding the current position of the robot.

Finally, all I have implemented and that is reusable in other programs is contained in an NQC
header file. If you want to use it, you have to write an NQC program yourself. However, it
would be great to have a more intuitive user interface instead (or as a supplement). For
example, a simple ”strategy construction kit” is used in [LP00] to freely combine a set of
predefined behaviours. Without such a tool, you can hardly motivate children or other people
not experienced in programming to play around with it. An easy-to-use interface, on the other
hand, would possibly allow using the soccer robots in educational or playing environments.

Anyway, I had a great time playing with Mindstorms and I can recommend it to everyone
who’s interested at least a little. Or as Lego likes to put it: just imagine ...

56

A NQC code for the soccer robots
(excerpt)

// state constants
#define STATE_ALIGN 1
#define STATE_ALIGN_TURNING_LEFT 201
#define STATE_ALIGN_TURNING_RIGHT 202
#define STATE_ALIGN_DRIVING 3
#define STATE_ALIGN_WAIT_FOR_TOUCH 4
#define STATE_ALIGN_FINISHED 5

// symbolic constants for ranges of light sensor values
#define MIN 0
#define MAX 1
#define INBETWEEN 2
#define UNDEFINED -1

// misc constants
#define NUM_SHADES 3

// direction constants
// (must be exactly the numerical values used here)
#define NORTH 0
#define EAST 1
#define SOUTH 2
#define WEST 3

// light sensor variables
int shades[NUM_SHADES];
int currentSample;
int previousSample;
int currentLightness;
int previousLightness;
int oldSample;
int min;
int max;
int currentShade;
int grayBlackCount;
int blackGrayCount;

// state variables
int state;
int subState;

57

Appendix A. NQC code for the soccer robots (excerpt)

/**
* Gathers information from the light sensor and remembers the
* light shades found.
* Doesn’t use any resources (except variables).
*/

void adjustShades() {
int diffMark;
int diff;
int i;
int minValue;
int maxValue;
int sample;

// collect sensor information
currentLightness = LIGHT_SENSOR;

// search the nearest shade
diffMark ||= currentLightness - shades[0];
i = 0;
if (diffMark > ADJUST_THRESHOLD) {

diff ||= currentLightness - shades[1];
if (diff < diffMark) {

i = 1;
diffMark = diff;
if (diffMark > ADJUST_THRESHOLD) {

diff ||= currentLightness - shades[2];
if (diff < diffMark) {

i = 2;
diffMark = diff;

}
}

} else {
diff ||= currentLightness - shades[2];
if (diff < diffMark) {

i = 2;
diffMark = diff;

}
}

}

// check if we have a new shade ...
if (diffMark > SHADES_DIFFERENT_DIFF) {

// ... yes we do
//PlaySound(SOUND_UP);
shades[currentShade] = currentLightness;
currentShade = (currentShade+1)%NUM_SHADES;

// ring buffer

// find min and max shade
// this is necessary since a min or max value might
// have been thrown out
minValue = 1000;
maxValue = 0;
for (i = 0; i < NUM_SHADES; ++i) {

58

Appendix A. NQC code for the soccer robots (excerpt)

if (shades[i] < minValue) {
minValue = shades[i];
min = i;

}
if (shades[i] > maxValue) {

maxValue = shades[i];
max = i;

}
}

// remember the sample
// (just in the form MIN, MAX, or INBETWEEN)
if (currentLightness == minValue) {

sample = MIN;
} else if (currentLightness == maxValue) {

sample = MAX;
} else {

sample = INBETWEEN;
}

} else {

// adjust the shade
if (diffMark > ADJUST_THRESHOLD) {

// this is an expensive operation, so only perform it
// when significant changes occur
shades[j] = (shades[i] + currentLightness)/2;
//PlaySound(SOUND_CLICK);

}

// remember the sample
// (just in the form MIN, MAX, or INBETWEEN)
if (j == min) {

sample = MIN;
} else if (j == max) {

sample = MAX;
} else {

sample = INBETWEEN;
}

}

// remember the previous lightness
if (sample != currentSample) {

oldSample = previousSample;
previousSample = currentSample;
currentSample = sample;

if (currentSample == MIN) {
if (previousSample == INBETWEEN &&

oldSample == MAX) {
++blackGrayCount;

} else if (previousSample == MAX &&
oldSample == INBETWEEN) {

++grayBlackCount;
}

59

Appendix A. NQC code for the soccer robots (excerpt)

}
}

}

task adjustShadesTask() {
while (true) {

adjustShades();
}

}

/**
* Try to follow the border (right hand).
* Uses Timer 1.
*
* State before: doesn’t matter
* State after: not changed
* Substate before: doesn’t matter
* Substate after: many possibilities (don’t rely on it)
*/

void followBorderRight() {
if (subState == SUBSTATE_SWEEPING_RIGHT_FULL ||

subState == SUBSTATE_DRIVING_RIGHT_FULL) {
if (TOUCH_SENSOR_LEFT) {

subState = SUBSTATE_SWEEPING_LEFT_FULL;
setSweepingLeftFull();
ClearTimer(1);

} else if (TOUCH_SENSOR_RIGHT) {
subState = SUBSTATE_DRIVING_LEFT_FULL;
setDrivingLeftFull();
ClearTimer(1);

}
} else if (subState == SUBSTATE_SWEEPING_LEFT_FULL ||

subState == SUBSTATE_DRIVING_LEFT_FULL) {
if (!(TOUCH_SENSOR_LEFT || TOUCH_SENSOR_RIGHT)) {

subState = SUBSTATE_DRIVING_RIGHT_FULL;
setDrivingRightFull();
ClearTimer(1);

} else {
if (FastTimer(1) > 6) {

// react after a certain time blocked
if (subState == SUBSTATE_DRIVING_LEFT_FULL) {

subState = SUBSTATE_SWEEPING_LEFT_FULL;
setSweepingLeftFull();

} else {
subState = SUBSTATE_TURNING_LEFT_FULL;
setTurningLeftFull();

}
ClearTimer(1);

}
}

} else if (subState == SUBSTATE_TURNING_LEFT_FULL) {
if (!(TOUCH_SENSOR_LEFT || TOUCH_SENSOR_RIGHT)) {

setHalt();

60

Appendix A. NQC code for the soccer robots (excerpt)

Wait(5);
subState = SUBSTATE_SWEEPING_RIGHT_FULL;
setSweepingRightFull();
motorsFwd();
motorsOn();

}
} else {

subState = SUBSTATE_SWEEPING_RIGHT_FULL;
setSweepingRightFull();
motorsFwd();
motorsOn();

}
}

/**
* Aligns orthogonally to a wall.
* Uses timer 1.
*
* State before: STATE_ALIGN or STATE_ALIGN_DRIVING (latter is
* more optimistic when a touch sensor is first
* triggered, but timer 1 must be cleared!)
* State after: STATE_ALIGN_xxx
* (STATE_ALIGN_FINISHED when finished)
* Substate before: doesn’t matter (but should be something
* moving forward)
* Substate after: halt as soon as alignment is finished,
* any other before
*/

void align() {
if (TOUCH_SENSOR_LEFT && TOUCH_SENSOR_RIGHT) {

setHalt();
state = STATE_ALIGN_FINISHED;

} else if (state == STATE_ALIGN) {
if (TOUCH_SENSOR_LEFT && !TOUCH_SENSOR_RIGHT) {

setTurningLeftFull();
motorsOn();
Wait(10);
setHalt();
ClearTimer(1);
state = STATE_ALIGN_TURNING_LEFT;

} else if (!TOUCH_SENSOR_LEFT && TOUCH_SENSOR_RIGHT) {
setTurningRightFull();
motorsOn();
Wait(10);
setHalt();
ClearTimer(1);
state = STATE_ALIGN_TURNING_RIGHT;

}
// if no sensor triggers, go on with whatever

} else if (state == STATE_ALIGN_TURNING_LEFT) {
if (FastTimer(1) >= 5) {

setDrivingFwdFull();
motorsFwd();
motorsOn();

61

Appendix A. NQC code for the soccer robots (excerpt)

state = STATE_ALIGN_WAIT_FOR_TOUCH;
}

} else if (state == STATE_ALIGN_TURNING_RIGHT) {
if (FastTimer(1) >= 5) {

setDrivingFwdFull();
motorsFwd();
motorsOn();
state = STATE_ALIGN_WAIT_FOR_TOUCH;

}
} else if (state == STATE_ALIGN_WAIT_FOR_TOUCH) {

if (TOUCH_SENSOR_LEFT || TOUCH_SENSOR_RIGHT) {
ClearTimer(1);
state = STATE_ALIGN_DRIVING;

}
// no timeout (yet)

} else if (state == STATE_ALIGN_DRIVING) {
if (FastTimer(1) >= 10) {

state = STATE_ALIGN;
}

}
// do nothing in case of an illegal state
// (saves program space)

}

62

B Bibliography

[Baua] Dave Baum.NQC – Not Quite C.
http://www.enteract.com/~dbaum/nqc/ .

[Baub] Dave Baum.Using Mindstorms with a Macintosh.
http://www.enteract.com/~dbaum/lego/macmind/ .

[Cap00] Ole Caprani.RCX Manual, 2000.
http://www.daimi.au.dk/dArkOS/Vaerktoejer.dir/RCX.

vejledning.dir/Vejledning.html .

[FvDFH96] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.Com-
puter Graphics: Principles and Practice, Second Edition in C. Addison-Wesley
Pub Co, 1996. ISBN 0-201-84840-6.

[Gas] Michael Gasperi.Vision Command.
http://www.plazaearth.com/usr/gasperi/viscommand.htm .

[Juna] Andreas Junghans.Lego Mindstorms.
http://www.fh-karlsruhe.de/~juan0014/mindstorms/index_en.

html .

[Junb] Andreas Junghans.OpenGL Grabber (Ogre).
http://www.fh-karlsruhe.de/~juan0014/ogre/index_en.html .

[LEGa] The LEGO Group.LEGO MINDSTORMS.
http://mindstorms.lego.com/ .

[LEGb] The LEGO Group.RoboLab – LEGO Mindstorms Sets for Schools.
http://www.lego.com/dacta/robolab/default.htm .

[LEG99] The LEGO Group.LEGO Programmable Bricks Reference Guide, Nov 1999.
http://mindstorms.lego.com/sdk/index.html .

[LEG00] The LEGO Group.RCX 2.0 BETA SDK, Jul 2000.
http://mindstorms.lego.com/sdk2/index.html .

[Log] Logitech.Logitech QuickCam SDK.
http://developer.logitech.com/sdk/ .

63

http://www.enteract.com/~dbaum/nqc/

http://www.enteract.com/~dbaum/lego/macmind/

http://www.daimi.au.dk/dArkOS/Vaerktoejer.dir/RCX.vejledning.dir/Vejledning.html

http://www.daimi.au.dk/dArkOS/Vaerktoejer.dir/RCX.vejledning.dir/Vejledning.html

http://www.plazaearth.com/usr/gasperi/viscommand.htm

http://www.fh-karlsruhe.de/~juan0014/mindstorms/index_en.html

http://www.fh-karlsruhe.de/~juan0014/mindstorms/index_en.html

http://www.fh-karlsruhe.de/~juan0014/ogre/index_en.html

http://mindstorms.lego.com/

http://www.lego.com/dacta/robolab/default.htm

http://mindstorms.lego.com/sdk/index.html

http://mindstorms.lego.com/sdk2/index.html

http://developer.logitech.com/sdk/

Appendix B. Bibliography

[LP00] Henrik Hautop Lund and Luigi Pagliarini.Robocup Jr. with LEGO Mindstorms,
2000.
ftp://ftp.daimi.au.dk/Staff/hhl/lund.RoboCupJr.ps.gz .

[Mic99] Microsoft Corporation.Windows 98 Driver Development Kit (DDK), Jul 1999.
http://www.microsoft.com/ddk/ddk98.asp .

[Mic01] Microsoft Corporation.DirectShow for Windows XP, 2001.
http://msdn.microsoft.com/library/en-us/dshow/htm/

directshow.asp?frame=true .

[Ove99] Mark Overmars.Programming Lego Robots using NQC. Utrecht University,
Department of Computer Science, Mar 1999.
http://www.cs.uu.nl/people/markov/lego/tutorial.pdf .

[Pro99] Kekoa Proudfoot.RCX Internals, 1999.
http://graphics.stanford.edu/~kekoa/rcx/ .

[RAWG01] Sandy Ressler, Brian Antonishek, Qiming Wang, and Afzal Godil.Integrating
Active Tangible Devices with a Synthetic Environment for Collaborative
Engineering. National Institute of Standards and Technology (NIST), U.S.A.,
Feb 2001.
http://www.itl.nist.gov/iaui/ovrt/people/sressler/

tangible3.pdf .

[Rob] RoboCup Official Site.
http://www.robocup.org/ .

[Sol] Jose Solorzano.leJOS: Java based OS for Lego RCX.
http://lejos.sourceforge.net/ .

64

ftp://ftp.daimi.au.dk/Staff/hhl/lund.RoboCupJr.ps.gz

http://www.microsoft.com/ddk/ddk98.asp

http://msdn.microsoft.com/library/en-us/dshow/htm/directshow.asp?frame=true

http://msdn.microsoft.com/library/en-us/dshow/htm/directshow.asp?frame=true

http://www.cs.uu.nl/people/markov/lego/tutorial.pdf

http://graphics.stanford.edu/~kekoa/rcx/

http://www.itl.nist.gov/iaui/ovrt/people/sressler/tangible3.pdf

http://www.itl.nist.gov/iaui/ovrt/people/sressler/tangible3.pdf

http://www.robocup.org/

http://lejos.sourceforge.net/

		1 Introduction

		1.1 Document conventions

		1.2 Subject of this thesis

		2 About Lego Mindstorms

		2.1 Hardware and firmware

		2.1.1 The Robotics Invention System 1.5

		2.1.1.1 The RCX and the Lego firmware

		2.1.1.2 Lego Technic parts and sensors

		2.1.1.3 The IR tower

		2.1.2 The Vision Command camera

		2.2 Software

		2.2.1 The Robotics Invention System programming environment

		2.2.1.1 User interface

		2.2.1.2 Generated programs

		2.2.2 RoboLab

		2.2.3 LASM

		2.2.4 The Spirit ActiveX control

		2.2.5 Lego Mindscript

		2.2.6 NQC

		2.2.7 The Vision Command programming environment

		2.2.7.1 Basics

		2.2.7.2 RCX interface

		2.2.8 The Logitech QuickCam SDK

		2.3 Glossary

		3 The soccer project

		3.1 Planning the environment

		3.1.1 Prerequisites

		3.1.2 The environment used in this thesis

		3.1.3 Possible alternatives

		3.2 Constructions

		3.2.1 The arena

		3.2.2 The robots

		3.2.3 The overhead camera

		3.3 Software

		3.3.1 Where am I?

		3.3.1.1 Floor patterns

		3.3.1.2 Driving along a wall

		3.3.1.3 Aligning orthogonally to a wall

		3.3.1.4 The world model

		3.3.1.5 Robot characteristics

		3.3.2 Where is the ball?

		3.3.2.1 Using Vision Command as a smart sensor

		3.3.2.2 Excursion: USB cameras and WDM streaming drivers

		3.3.2.3 Writing a filter driver

		3.3.2.4 Finding and amplifying the ball

		3.3.2.5 Broadcasting to several robots

		3.3.3 The main program

		3.3.3.1 Strategy

		3.3.3.2 Utilities and gimmicks

		3.4 Put to the test

		4 Conclusions

		4.1 Useful results

		4.2 Possible improvements

		A NQC code for the soccer robots (excerpt)

		B Bibliography

